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OBIJECTIVES:
1. To understand the building blocks of digital communication system.
2. To prepare mathematical background for communication signal analysis.
3. Tounderstand and analyze the signal flow in a digital communication system.
4. To analyze error performance of a digital communication system in presence of noise and
other interferences.
UNITI
Pulse Digital Modulation: Elements of digital communication systems, advantages of digital
communication systems, Elements of PCM: Sampling, Quantization & Coding, Quantization
error, Companding in PCM systems. Differential PCM systems (DPCM). Time Division
Multiplexing & Demultiplexing.
Delta Modulation: Delta modulation, its draw backs, adaptive delta modulation, comparison of
PCM and DM systems, Noise in PCM and DM systems. Illustrative Problems.
UNIT I
Digital Modulation Techniques: Introduction, ASK modulator, Coherent and Non-Coherent ASK
detector, FSK modulator, Spectrum of FSK, coherent reception, non-coherent detection of FSK.
BPSK transmitter, Coherent reception of BPSK, DPSK, QPSK.
Data Transmission: Base band signal receiver, probability of error, The optimum filter, Matched
filter, probability of error using matched filter.Optimum filter using correlator.Probability of
error of ASK,FSK,BPSK and QPSK. lllustrative Problems.
UNIT I
Information Theory: Discrete messages, Concept of amount of information and its properties.
Average information, Entropy and its properties. Information rate, Mutual information and its
properties, lllustrative Problems.
Source Coding: Introduction, Advantages, Hartley Shannon’s theorem, bandwidth —S/N trade
off, Shanon- Fano coding, Huffman coding, lllustrative Problems.
UNIT IV
Linear Block Codes: Introduction, Matrix description of Linear Block codes, Error detection and
error correction capabilities of linear block codes, Hamming codes.
Cyclic Codes: Encoding, Syndrome Calculation, Decoding,
UNITV
Convolution Codes: Introduction, encoding of convolution codes, time domain approach,
transform domain approach. Graphical approach: State, Tree and Trellis diagram. Decoding
using Viterbi algorithm lllustrative Problems.
TEXT BOOKS:
1. Digital communications - Simon Haykin, John Wiley, 2005
2. Principles of Communication Systems — H. Taub and D. Schilling, TMH, 2003
REFERENCES:
1. Digital and Analog Communication Systems — K.Sam Shanmugam, John Wiley, 2005.



2. Digital Communications — John Proakis, TMH, 1983. Communication Systems Analog &
Digital — Singh & Sapre, TMH, 2004.

3. Modern Analog and Digital Communication — B.P.Lathi, Oxford reprint,3rd edition,
2004.

OUTCOMES:

At the end of the course, the student will be able to:

1. Understand basic components of digital communication systems

2. Design Optimum receivers for digital modulation techniques

3. Analyze the error performance of digital modulation techniques

4. Know about different error detecting and error correcting codes.



UNIT-1

Digital Pulse Modulation

Elements of Digital Communication Systems:

1.
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Fig. 1 Elements of Digital Communication Systems

Information Source and Input Transducer:

The source of information can be analog or digital, e.g. analog: audio or video
signal, digital: like teletype signal. In digital communication the signal produced by
this source is converted into digital signal which consists of 1's and 0’s. For this we
need a source encoder.

Source Encoder:

In digital communication we convert the signal from source into digital signal
as mentioned above. The point to remember is we should like to use as few binary
digits as possible to represent the signal. In such a way this efficient representation
of the source output results in little or no redundancy. This sequence of binary digits
is called information sequence.

Source Encoding or Data Compression: the process of efficiently converting
the output of whether analog or digital source into a sequence of binary digits is
known as source encoding.




Channel Encoder:

The information sequence is passed through the channel encoder. The
purpose of the channel encoder is to introduce, in controlled manner, some
redundancy in the binary information sequence that can be used at the receiver to
overcome the effects of noise and interference encountered in the transmission on
the signal through the channel.

For example take k bits of the information sequence and map that k bits to
unigue n bit sequence called code word. The amount of redundancy introduced is
measured by the ratio n/k and the reciprocal of this ratio (k/n) is known as rate of
code or code rate.

Digital Modulator:

The binary sequence is passed to digital modulator which in turns convert the
sequence into electric signals so that we can transmit them on channel (we will see
channel later). The digital modulator maps the binary sequences into signal wave
forms , for example if we represent 1 by sin x and 0 by cos x then we will transmit sin
x for 1 and cos x for 0. ( a case similar to BPSK)

Channel:

The communication channel is the physical medium that is used for
transmitting signals from transmitter to receiver. In wireless system, this channel
consists of atmosphere , for traditional telephony, this channel is wired , there are
optical channels, under water acoustic channels etc.We further discriminate this
channels on the basis of their property and characteristics, like AWGN channel etc.
Digital Demodulator:

The digital demodulator processes the channel corrupted transmitted
waveform and reduces the waveform to the sequence of numbers that represents
estimates of the transmitted data symbols.

Channel Decoder:

This sequence of numbers then passed through the channel decoder which
attempts to reconstruct the original information sequence from the knowledge of
the code used by the channel encoder and the redundancy contained in the received
data

Note: The average probability of a bit error at the output of the decoder is a

measure of the performance of the demodulator — decoder combination.

8. Source Decoder:

At the end, if an analog signal is desired then source decoder tries to decode
the sequence from the knowledge of the encoding algorithm. And which results in
the approximate replica of the input at the transmitter end.




9. Output Transducer:

Finally we get the desired signal in desired format analog or digital.

Advantages of digital communication:

Can withstand channel noise and distortion much better as long
as the noise and the distortion are within limits.

Regenerative repeaters prevent accumulation of noise along the
path.

Digital hardware implementation is flexible.

Digital signals can be coded to yield extremely low error rates,
high fidelity and well as privacy.

Digital communication is inherently more efficient than analog in
realizing the exchange of SNR for bandwidth.

It is easier and more efficient to multiplex several digital signals.

Digital signal storage is relatively easy and inexpensive.

Reproduction with digital messages is extremely reliable without
deterioration.

The cost of digital hardware continues to halve every two or
three years, while performance or capacity doubles over the
same time period.

Disadvantages

TDM digital transmission is not compatible with the FDM

A Digital system requires large bandwidth.




Introduction to Pulse Modulation

What is the need for Pulse Modulation?

e Many Signals in Modern Communication Systems are digital

e Also, analog signals are transmitted digitally.

e Reduced distortion and improvement in signal to noise ratios.
e PAM, PWM, PPM, PCM and DM.

e |In CW modulation schemes some parameter of modulated wave varies continuously with
message.

® |n Analog pulse modulation some parameter of each pulse is modulated by a particular
sample value of the message.
® Pulse modulation is of two types
o Analog Pulse Modulation
= Pulse Amplitude Modulation (PAM)
= Pulse width Modulation (PWM)
= Pulse Position Modulation (PPM)
o Digital Pulse Modulation
= Pulse code Modulation (PCM)
= Delta Modulation (DM)

PULSE MODULATION

Pulse Amplitude Modulation I

Pulse Width Modulation

Pulse Position Modulation

Pulse Code Modulation T

||
Delta Modulation mnﬂ ﬂﬂ ”_

Pulse Code Modulation:

Three steps involved in conversion of analog signal to digital signal

e Sampling
e Quantization
e Binary encoding




Quantized signal

PCM encoder
> Sampling > Quantizing' > Encoding ' > 11°++1100
> Digital data
Analog signal
PAM signal
Fig. 2 Conversion of Analog Signal to Digital Signal
Note: Before sampling the signal is filtered to limit bandwidth.
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Fig. 3 Elements of PCM System
Sampling:

e Process of converting analog signal into discrete signal.
e Sampling is common in all pulse modulation techniques




e The signal is sampled at regular intervals such that each sample is proportional to
amplitude of signal at that instant

e Analog signal is sampled every Ts Secs, called sampling interval. fs=1/Tsis called
sampling rate or sampling frequency.

e fs=2fmis Min. sampling rate called Nyquist rate. Sampled spectrum (w) is repeating
periodically without overlapping.

e Original spectrum is centered at w=0 and having bandwidth of wm. Spectrum can be
recovered by passing through low pass filter with cut-off wm.

e For fs<2fmsampled spectrum will overlap and cannot be recovered back. This is
called aliasing.

Sampling methods:

e |deal — An impulse at each sampling instant.
e Natural — A pulse of Short width with varying amplitude.
e Flat Top — Uses sample and hold, like natural but with single amplitude value.

Amplitude Amplitude

A
Analog signal

f T [ - (I ﬂ H o Anog signa ;
ESERR N [ I o N[

a. ldeal sampllng b. Natural sampling

Analog signal
\/ g sig
Time

‘T'\J_LU-U'}

Amplitude

c. Flat—top sampling
Fig. 4 Types of Sampling

Sampling of band-pass Signals:

e A band-pass signal of bandwidth 2f, can be completely recovered from its samples.
Min. sampling rate =2xBandwidth
=2x2fm=4fm
e Range of minimum sampling frequencies is in the range of 2xBW to 4xBW

Instantaneous Sampling or Impulse Sampling:

e Sampling function is train of spectrum remains constant impulses throughout
frequency range. It is not practical.




Natural sampling:

e The spectrum is weighted by a sinc function.
e Amplitude of high frequency components reduces.

Flat top sampling:

e Here top of the samples remains constant.

e Inthe spectrum high frequency components are attenuated due sinc pulse roll off.
This is known as Aperture effect.

e If pulse width increases aperture effect is more i.e. more attenuation of high
frequency components.

Sampling Theorem:

Statement of sampling theorem

1) A band limited signal of finite energy, which has no frequency components
higher than W Hertz, is completely described by specifying the values of the

signal at instants of time separated by 2_1W seconds and
2) A band limited signal of finite energy, which has no frequency components

higher than W Hertz, may be completely recovered from the knowledge of its
samples taken at the rate of 2W samples per second.

The first part of above statement tells about sampling of the signal and second
part tells about reconstruction of the signal. Above statement can be combined and
stated alternately as follows :

A continuous time signal can be completely represented in its samples and recovered back
if the sampling frequency is twice of the highest frequency content of the signal. i.e.,
2 2W
Here f; is the sampling frequency and
W is the higher frequency content
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Proof of sampling theorem

There are two parts : (I) Representation of x(f) in terms of its samples
(IT) Reconstruction of x(f) from its samples.

Part I : Representation of x(f) in its samples x(nT)

Step.1: Define x5(t)

Step 2 : Fourier transform of xg(f) i.e. X5(f)
Step 3 : Relation between X() and X5(f)
Step 4 : Relation between x(t) and A(iT.)

! ;-'»;;M’
Step 1 : Define x5(t)
The sampled signal x5(f) is given as,
xs(f) = Y AH)8(t-nTy) SN |
Nn=— oo

Here observe that xg(f) is the product of x5 and impulse train §(f) as shown in
above fig In the above equation §(t-nT,) indicates the samples placed at T, +2T,
%37 ... and so on.

Step 2 : FT of xg(t) i.e. X5(f)
Taking FT of equation (1.3.1).

Xs() = FT{ il(t)ﬁ(t-"'fs)}

= FT {Product of x(t) and impulse train}

We know that FT of product in time domain becomes convolution in frequency
domain. i.e.,

Xs(f) = FT () * FTO(E-nT,)) oo 2
By definitions, x(f) TR B X(f) and
8(t-nT,) <= f, T 8(f-nf,)

n=— oo

Hence equation (1.3.2) becomes,

Xs() = XP*f 38(F-nf)

Since convolution is linear,

Xst) = fi S X()*8(f-nfy)




= % SX(-nf) By shiting property of impulsé fiiction

= o fo XU =2f) + fs X(f = fo) + fo XN+ fs XU = f) + fs X(f =2f )+

Comments

(i) The RHS of above equation shows that X(f) is placed
at £f,+2f, ,£3f,

(i) This means X(f) is periodic in f,.
(iii) If sampling frequency is f; = 2W, then the spectrums X(f) just touch

each other.
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Fig. 6 Spectrum of original signal and sampled signal

Step 3 : Relation between X(f) and X 5(f)
Important assumption : Let us assume that f; = 2W, then as per above diagram.
Xs(H = £X(O for-W<f<Wand f, = 2W

or X() = LX5(0 . 3
s

Step 4 : Relation between x(t) and x(nT)

DTFTis, X(Q) = Y x(me /@
n=—eo
X(f) = ix(n)e‘iz’q" 4




In above equation 'f' is the frequency of DT signal. If we replace X(f) by Xj5(f),
then 'f' becomes frequency of CT signal. i.e.,

L - "fn
Xs() = Y xn)e a3

In above equation 'f is frequency of CT signal. And ?f— = Frequency of DT signal
s

in equation 4 Since x(n) = x(nT), i.e. samples of x(t), then we have,
Xs() = THnT,)e %% since fl -T,

s

Nn=-—oeo
Putting above expression in equation 3 ,
X(f) = 7 TAnT,)e /2o

sn=—“

Inverse Fourier Transform (IFT) of above equation gives x(f) i.e.,

xt) = IFT{+ Y x(nT,)e i2nn% I
% &0
Comments :
i) Here x(t) is represented completely in terms of x(nT).

ii) Above equation holds for f; = 2W. This means if the samples are taken at the
rate of 2W or higher, x{f) is completely represented by its samples.

iii) First part of the sampling theorem is proved by above two comments.
Part II : Reconstruction of x(¢) from its samples

Step 1: Take inverse Fourier transform of X(f) which is in terms of X3(/).
Step 2 s Show that x(f) is obtained back with the help of interpolation function.

Step 1: The IFT of equation 5  becomes,
Af) = j‘{l zx(nTs)e—ﬂnfn'l;}ejZnﬂ df

F =,

Here the integration can be taken from -W<f<W. Since X(f) =

1
— X5 (f) for
fs )

-W<f<W. (See Fig.6 ).
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x(nTs)e—iZ‘Rfrl'G _ejzlff df

| M
8

a = [
t) = -
_wfsn

Interchanging the order of summation and integration,

P w
znnmfl [ ei2efit-nTe) 4
s

n=-—oe -W

= 1 [ ei2nft-n) TV
2’4"Ts>'—'[7‘z7m?ﬁ5]_w

i e

x(t)

ix(nrs)%

eI2RW(t-nTy) _ ,—j2RW(t-nT;)
j2m(E-nTy)

= 1 sin2nW(t-nT,)
Zd’l'rs)'f_s. n(t-nT‘s) s

n=—oo

= sinm(2Wt-2WnT,)
= XAnT,) x(t—f,nTy)

Heref,=2W,hmceT,=l=-21—W.Simplifyingaboveequaﬁon,

s

e sinn(2Wt-n)
X = Y "("Ts)—nm

sinmtO 7
= sinc 6
no

ix(n'l’s)sinc(ZWt—n) since

Step 2 : Let us interpret the above equation. Expanding we get,
X(t) =+ x(=2T)sinc(2W i+ 2)+ x(=T,) sinc(2 Wt +1) +x(0) sinc(2W £) + X(T) sinc(2W £ =1) 4
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Fig. 7 (a) Sampled version of signal x(t)
(b) Reconstruction of x(t) from its samples

Comments :

i) The samples x(nT;) are weighted by sinc functions.

ii) The sinc function is the interpolating function. Fig.7 shows, how x(f) is

interpolated.

Step 3 : Reconstruction of x(t) by lowpass filter

When the interpolated signal of equation 6 is passed through the lowpass
filter of bandwidth ~-W<f<W, then the reconstructed waveform shown in above
Fig.  7(b) is obtained. The individual sinc functions are interpolated to get smooth
x(t).
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PCM Generator:

The pulse code modulator technique samples the input signal x(f) at frequency
fs 22W. This sampled 'Variable amplitude' pulse is then digitized by the analog to
digital converter. The parallel bits obtained are converted to a serial bit stream.
Fig. 8 shows the PCM generator.

v digits
xt) | Lowpass X(nTg) | q-tevel |X(0T9| Binary " Parael | PCM
—p fiter }—f S/H r. quantizer [ encoder % 1o serial —»
fo=W (digitizer) o] converter | r=vf,

@-—D Timer

fg22w

Fig. 8 PCM generator

In the PCM generator of above figure, the signal x(f) is first passed through the
lowpass filter of cutoff frequency 'W' Hz. This lowpass filter blocks all the frequency
components above 'W' Hz. Thus x(f) is bandlimited to ‘W' Hz. The sample and hold
circuit then samples this signal at the rate of f.. Sampling frequency f; is selected
sufficiently above Nyquist rate to avoid aliasing i.e.,

fi 2 2w

In Fig. 8 output of sample and hold is called x(nT;). This x(nT;) is discrete in
time and continuous in amplitude. A g-level quantizer compares input x(n T;) with its
fixed digital levels. It assigns any one of the digital level to x(nT;) with its fixed
digital levels. It then assigns any one of the digital level to x(nT;) which results in
minimum distortion or error. This error is called quantization error. Thus output of
quantizer is a digital level called x, (n T;).

Now coming back to our discussion of PCM generation, the quantized signal level
x,(nTy) is given to binary encoder. This encoder converts input signal to 'v' digits
binary word. Thus x, (nT;) is converted to 'V' binary bits. The encoder is also called
digitizer.

It is not possible to transmit each bit of the binary word separately on
transmission line. Therefore 'v' binary digits are converted to serial bit stream to
generate single baseband signal. In a parallel to serial converter, normally a shift
register does this job. The output of PCM generator is thus a single baseband signal of
binary bits.

An oscillator generates the clocks for sample and hold an parallel to serial
converter. In the pulse code modulation generator discussed above ; sample and hold,
quantizer and encoder combinely form an analog to digital converter.

13




Transmission BW in PCM:

Let the quantizer use '’ number of binary digits to represent each level. Then the
number of levels that can be represented by 'z’ digits will be,

q =2 1
Here g’ represents total number of digital levels of g-level quantizer.
For example if v =13 bits, then total number of levels will be,

q = 23 =8 levels

Each sample is converted to '2' binary bits. i.e. Number of bits per sample = v
We know that, Number of samples per second = f
. Number of bits per second is given by,

(Number of bits per second) = (Number of bits per samples)
' x (Number of samples per second)
= v bits per sample x f, samples per second ... 2

The number of bits per second is also called signaling rate of PCM and is denoted
by 'r' ie.,

Signaling rate in PCM : r = v f; 3

Here f, 2 2W.

Bandwidth needed for PCM transmission will be given by half of the signaling
rate ie.,

5

-;-r 4
Transmission Bandwidth of PCM : 4872—;-01‘5 Since f, 22W N
BTZUW oo 6
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PCM Receiver:

Fig. 9 (a) shows the block diagram of PCM receiver and Fig. 9 (b) shows the
reconstructed signal. The regenerator at the start of PCM receiver reshapes the pulses
and removes the noise. This signal is then converted to parallel digital words for each
sample.

v digits
PCM+ Noise pcm| Seral Digital xq(1) | Lowpass | yg(t)
——————{ Regenerator |——{ to parallel] . |t0analog f—wf S/H |— filter (—»
T converter] - converter fo=W
mﬁ_. Timer (a)
Xq(t)
- & -~ .~
5/q1 M) 77— '
i Q
x(kT) , 3
3/ ld \\
q- J \ (b)
/ \\
Il,
1 / q ] ’ \hh
0 T 7 v Y —t
B kT
-1 [q i I o A—

Fig. 9 (a) PCM receiver
(b) Reconstructed waveform

The digital word is converted to its analog value x, (f) along with sample and
hold. This signal, at the output of S/H is passed through lowpass reconstruction filter
to get v, (). As shown in reconstructed signal of Fig. 9(b), it is impossible to
reconstruct exact original signal x(f) because of permanent quantization error
introduced during quantization at the transmitter. This quantization error can be
reduced by increasing the binary levels. This is equivalent to increasing binary digits
(bits) per sample. But increasing bits 'v' increases the signaling rate as well as
transmission bandwidth as we have seen in equation 3 and equation 6.
Therefore the choice of these parameters is made, such that noise due to quantization
error (called as quantization noise) is in tolerable limits.

Quantization

e The quantizing of an analog signal is done by discretizing the signal with a number of
guantization levels.

15




e Quantization is representing the sampled values of the amplitude by a finite set of
levels, which means converting a continuous-amplitude sample into a discrete-time
signal

e Both sampling and quantization result in the loss of information.

e The quality of a Quantizer output depends upon the number of quantization levels
used.

e The discrete amplitudes of the quantized output are called as representation levels
or reconstruction levels.

e The spacing between the two adjacent representation levels is called a quantum or
step-size.

e There are two types of Quantization

o Uniform Quantization
o Non-uniform Quantization.

e The type of quantization in which the quantization levels are uniformly spaced is

termed as a Uniform Quantization.

e The type of quantization in which the quantization levels are unequal and mostly the
relation between them is logarithmic, is termed as a Non-uniform Quantization.

Uniform Quantization:

* There are two types of uniform quantization.
— Mid-Rise type
— Mid-Tread type.
* The following figures represent the two types of uniform quantization.

Output level Output level
[» 8
A=
4+
rL ot
; . 2 Input
4 i1 1 | Input t i . | } - R
| | 5 ' 0 2 4 level
0 2 4 level
T 4
T 14
Fig 1 : Mid-Rise type Uniform Quantization Fig 2 : Mid-Tread type Uniform Quantization

* The Mid-Rise type is so called because the origin lies in the middle of a raising part of
the stair-case like graph. The quantization levels in this type are even in number.

* The Mid-tread type is so called because the origin lies in the middle of a tread of the
stair-case like graph. The quantization levels in this type are odd in number.

* Both the mid-rise and mid-tread type of uniform quantizer is symmetric about the
origin.
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Quantization Noise and Signal to Noise ratio in PCM System:
Derivation of Quantization Error/Noise or Noise Power for Uniform (Linear) Quantization

Step 1 : Quantization Error

Because of quantization, inherent errors are introduced in the signal. This error is
cailed quamtization error. We have defined quantization error as,
e = X, (nT)=x(nTs) e (1)

Step 2 : Step size
Let an input x(n T,) be of continuous amplitude in the range —x,,, 10 + X .-

Therefore the total amplitude range becomes,
Total amplitude range = X, = (= ¥max)

= 2 Xmax

If this amplitude range is divided into 'q' levels of quantizer, then the step size '&
is given as,

§ = Xmax = (= Xmax)
q
e ;
q

If signal x(f) is normalized to minimum and maximum values equal to 1, then

Xmax = 1
............................. 4
~Xmax = —1 “)
Therefore step size will be,
4 = % (for normalized signal) e (5)

Step 3 : Pdf of Quantization error

If step size '8 is sufficiently small, then it is reasonable to assume that the
quantization error '¢’ will be uniformly distributed random variable. The maximum
quantization error is given by

Emax = E| --------------------------- (6)
o

ie. ) 2 Emax ag-
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Thus over the interval (—g, g) quantization error is uniformly distributed random

variable.

fX(x)“ fe (&) A

I—l

o
|
)

(a) (b)

Fig. 10 (a) Uniform distribution
(b) Uniform distribution for quantization error

In above figure, a random variable is said to be uniformly distributed over an
interval (a, b). Then PDF of 'X' is given by, (from equation of Uniform PDF).

0 for x<a
fio(®) = ﬁ for a<x<b
0 fOf D'/ T ——— 8)

Thus with the help of above equation we can define the probability density

function for quantization error '¢’ as,

0 for es-g-
1 ) )
f@© = {5 for -§<es§
0 for e>g ®
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Step 4 : Noise Power
quantization error 'e' has zero average value.
That is mean 'm. ' of the quantization error is zero.
The signal to quantization noise ratio of the quantizer is defined as,
S Signal power (normalized)

N ~ TNoise power (normalized) .

If type of signal at input i.e., x(f) is known, then it is possible to calculate signal
power.

The noise power is given as,
2.
Noise power = % - (11)

Here V2. is the mean square value of noise voltage. Since noise is defined by
random variable e’ and PDF f; (g), its mean square value is given as,
mean square value = E[g2] = £2 e {12)

The mean square value of a random variable ‘X' is given as,

E[X?]= [ x? fy(ydx By definition - (13)

—

X2

Here El?] = [e?f, ©de - (14)

From equation 9  we can write above equation as,

85/2
E[e?] = j' €2 x = de
-8/2
) l[g]m =1[(a/2)3+(6/2)3]
513],, 3| 3 3
. L[8% 8] 8
=358 8| 12 "3

*. From equation 1.8.25, the mean square value of noise voltage is,

2

= mean square value = o

2
% 12

noise
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When load resistance, R =1 ohm, then the noise power is normalized i.e.,
2

Noise power (normalized) = —”‘1’—"‘ [with R =1 in equation 11
_ %12 8
T

Thus we have,

Normalized noise power

2
or Quantization noise power = % ; For linear quantization.

or Quantization error (in terms of power) (16)
Derivation of Maximum Signal to Quantization Noise Ratio for Linear Quantization:
signal to quantization noise ratio is given as,
S Normalized signal power
N = Normalized noise power
Normalized signal power
il e . (17)
(8¢ /12)
The number of bits 'v' and quantization levels 'q' are related as,
q=2° - (18)
Putting this value in equation (3) we have,
2x
2”
Putting this value in equation 1.8.30 we get,
S _ Normalized signal power
N 2
! [_2 max ] +12
25
Let normalized signal power be denoted as 'P".
5 P _ 3
N i, 1 .,
22 12
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This is the required relation for maximum signal to quantization noise ratio. Thus,

. : — . piice: Bl B ot
Maximum signal to quantization noise ratio : e 2 2 - (20)

This equation shows that signal to noise power ratio of quantizer increases
exponentially with increasing bits per sample.

If we assume that input x(f) is normalized, i.e.,
Xpons & - (21)

max
Then signal to quantization noise ratio will be,
S

S 3x22vx p s (22)
If the destination signal power 'P' is normalized, i.e.,

Ps1 = (23)
Tien: the signal to noise ratio is given as,

-ISV < 3x2% w (24)

Since x,, =1andP <1, the signal to noise ratio given by above equation is
normalized.

Expressing the signal to noise ratio in decibels,

i

10log g [—15\7 )dB since power ratio.

< (48+60)dB

A

Thus,

Signal to Quantization noise ratio

Z|wn

for normalized values of power : ( ]d.B <(48+6v)dB

'P' and amplitude of input x (t) . (25)

Non-Uniform Quantization:

In non-uniform quantization, the step size is not fixed. It varies according to certain
law or as per input signal amplitude. The following fig shows the characteristics of Non
uniform quantizer.
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Output sample

P

+ 1

T 4 I Example: Nonuniform 3 bit quantizer

& 3
Input sample

-5 -4 -2 2 4

In this figure observe that step size is small at low input signal levels. Hence
quantization error is also small at these inputs. Therefore signal to quantization noise
power ratio is improved at low signal levels. Stepsize is higher at high input levels.
Hence signal to noise power ratio remains almost same throughout the dynamic range
of quantizer.

Companding PCM System:

* Non-uniform quantizers are difficult to make and expensive.
* Analternative is to first pass the speech signal through nonlinearity before
guantizing with a uniform quantizer.
* The nonlinearity causes the signal amplitude to be compressed.
— The input to the quantizer will have a more uniform distribution.
* At the receiver, the signal is expanded by an inverse to the nonlinearity.
* The process of compressing and expanding is called Companding.

O/P. Voltage of
Compander Compression

{Expansion

I/P. Voltage of

Expans:ioq Compander

Compression
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Compressor Uniform Quantizer Expander

mit)
——

m(r)

s
_Jl

*r—Ff >

|

e -

The 3 stages combine to
give the characteristics of a
Non-uniform quantizer

u - Law Companding for Speech Signals
Normally for speech and music signals a p - law compression is used. This
compression is defined by the following equation,

In(l+p|x|) Ix] €1

Z( = (Sgn) = s (@

Below Fig shows the variation of signal to noise ratio with respect to signal level
without companding and with companding.

50
T With companding/

[i]oda 1#

Without companding
20+

T T T T SEEa
-40 -30 -20 -10 0
Signal level dg —»

Fig. 11 PCM performance with p - law companding
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It can be observed from above figure that signal to noise ratio of PCM remains
almost constant with companding.

A-Law for Companding

The A law provides piecewise compressor characteristic. It has linear segment for
low level inputs and logarithmic segment for high level inputs. It is defined as,

Alx| 1
e T is A for OSMSZ )
7T |1+In(A)x|) 1 oss (2)

—<Llxl<1
i g

When A = 1, we get uniform quantization. The practical value for A is 87.56. Both
A-law and p-law companding is used for PCM telephone systems.

Signal to Noise Ratio of Companded PCM
The signal to noise ratio of companded PCM is given as,

S _ 3q2
N ~ [In(+w)? we(3)

Here q = 27 is number of quantization levels.

0 0.2 04 0.6 0s |

Differential Pulse Code Modulation (DPCM):

Redundant Information in PCM:

The samples of a signal are highly corrected with each other. This is because any
signal does not change fast. That is its value from present sample to next sample does
not differ by large amount. The adjacent samples of the signal carry the same
information with little difference. When these samples are encoded by standard PCM
system, the resulting encoded signal contains redundant information.
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Fig. shows a continuous time signal x(f) by dotted line. This signal is
sampled by flat top sampling at intervals T, 2T}, 3T ....nT,. The sampling frequency is
selected to be higher than nyquist rate. The samples are encoded by using 3 bit
(7 levels) PCM. The sample is quantized to the nearest digital level as shown by small

x(t)

bits (levels)
7 (1)
] & 5 5 (0
6 (110) e e 2 [ -
5 . ~Fr2 e
5 (101)- o o ¥1.9-7 S
S :‘l ---- ;- -----
4 (100)1 ~ L
e S
[=
&
2(010){ o
1(001)—
000 =
0 (000) T, 2T, 3T, 4T, 5T, 6T, 7T, 8T, 9T, 10T,
X(nT,)

Fig. Redundant information in PCM

circles in the diagram. The encoded binary value of each sample is written on the top

of the samples. We can see from Fig.

that the samples taken at 4T, 5T, and 6T

are encoded to same value of (110). This information can be carried only by one
sample. But three samples are carrying the same information means it is redundant.
Consider another example of samples taken at 9T, and10T;. The difference between
these samples is only due to last bit and first two bits are redundant, since they do

not change.
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Principle of DPCM

If this redundancy is reduced, then overall bit rate will decrease and number of
bits required to transmit one sample will also be reduced. This type of digital pulse
modulation scheme is called Differental Pulse Code Modulation.

DPCM Transmitter

The differential pulse code modulation works on the principle of prediction. The
value of the present sample is predicted from the past samples. The prediction may
not be exact but it is very close to the actual sample value. Fig. shows the
transmitter of Differential Pulse Code Modulation (DPCM) system. The sampled signal
is denoted by x(nT,) and the predicted signal is denoted by ¥(nT.). The comparator
finds out the difference between the actual sample value x(n7T,) and predicted sample
value ¥(n T,). This is called error and it is denoted by ¢(nT,). It can be defined as,

e(nT,) = x(nT)-x(nT,)

Comparator
Sampled
input [
oo [Enooder J———»- OPC
x(nT,)
fitter xg(nTg)
Fig. Differential pulse code modulation transmitter

Thus error is the difference between unquantized input sample x(nT,) and
prediction of it X(nT,). The predicted value is produced by using a prediction filter.
The quantizer output signal e, (2T;) and previous prediction is added and given as
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input to the prediction filter. This signal is called ¥y (nT.). This makes the prediction
more and more close to the actual sampled signal. We can see that the quantized error
signal e, (nT;) is very small and can be encoded by using small number of bits. Thus
number of bits per sample are reduced in DPCM.

The quantizer output can be written as,

eg(1T) = emT)+q(T) 2)
Here q(nT,) is the quantization error, As shown in Fig. the prediction filter
input x, (nT,) is obtained by sum ¥(n T,) and quantizer output i.e.,
XgnTy) = (T +e, (nTy) e (3)
Putting the value of ¢, (nT;) from equation 2 in the above equation we get,
g (nT) = XmT)+emT)+qmT) (4)
Equation 1 is written as,

e(nT,) = x(nT,)-x(nT,)
e(nT)+x(nTy) = x(nT,)

-, Putting the value of ¢(nT,) + X(nT;) from above equation into equation 4 we

get,
xgnle) = x(nT)+q(nTy) (6)

Thus the quantized version of the signal x, (nT;) is the sum of original sample
value and quantization error q(nT,). The quantization error can be positive or
negative. Thus equation 6 does not depend on the prediction filter characteristics.

Reconstruction of DPCM Signal
Fig. shows the block diagram of DPCM receiver.

DPCM
s £

= Culput

Prediction
filter

Fig. DPCM receiver

The decoder first reconstructs the quantized error signal from incoming binary
signal. The prediction filter output and quantized error signals are summed up to give
the quantized version of the original signal. Thus the signal at the receiver differs
from actual signal by quantization error q(nT,), which is introduced permanently in
the reconstructed signal.

Line Coding:

In telecommunication, a line code is a code chosen for use within a communications
system for transmitting a digital signal down a transmission line. Line coding is often used
for digital data transport.

The waveform pattern of voltage or current used to represent the 1s and Os of a
digital signal on a transmission link is called line encoding. The common types of
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line encoding are unipolar, polar, bipolar and Manchester encoding. Line codes are used
commonly in computer communication networks over short distances.

NRZ-L

NRZ-M

NRZ-S

RZ

Biphase-L

Biphase-M

Biphase—S
Differential
Manchester

Bipolar

Signal Comments

NRZ-L Non-return to zero level. This is the standard positive logic
signal format used in digital circuits.

1 forces a high level

0 forces a low level

NRZ-M Non return to zero mark

1 forces a transition

0 does nothing

NRZ-S Non return to zero space

1 does nothing

0 forces a transition

RZ Return to zero

1 goes high for half the bit period

0 does nothing

Biphase-L Manchester. Two consecutive bits of the same type force a
transition at the beginning of a bit period.

1 forces a negative transition in the middle of the bit

() forces a positive transition in the middle of the bit
Biphase-M There is always a transition at the beginning of a bit period.
1 forces a transition in the middle of the bit

(0 does nothing

Biphase-S8 There is always a transition at the beginning of a bit period.
1 does nothing

0 forces a transition in the middle of the bit

Ditferential There is always a transition in the middle of a bit period.
Manchester 1 does nothing

() forces a transition at the beginning of the bit

Bipolar The positive and negative pulses alternate.

1 forces a positive or negative pulse for half the bit period
0 does nothing
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Time Division Multiplexing:

The sampling theorem provides the basis for transmitting the information contained in a
band-limited message signal #(t) as a sequence of samples of #1(¢} taken uniformly at a
rate that is usually slightly higher than the Nyquist rate. An important feature of the
sampling process is a conservation of time. That is, the transmission of the message samples
engages the communication channel for only a fraction of the sampling interval on a
periodic basis, and in this way some of the time interval between adjacent samples is cleared
for use by other independent message sources on a time-shared basis. We thereby obtain
a time-division multiplex (TDM) system, which enables the joint utilization of a common
communication channel by a plurality of independent message sources without mutual
interference among them.

The concept of TDM is illustrated by the block diagram shown in Figure Each
input message signal is first restricted in bandwidth by a low-pass anti-aliasing filter to
remove the frequencies that are nonessential to an adequate signal representation. The
low-pass filter outputs are then applied to a commutator, which is usually implemented
using electronic switching circuitry. The function of the commutator is twofold: (1) to take
a narrow sample of each of the N input messages at a rate f; that is slightly higher than
2W, where W is the cutoff frequency of the anti-aliasing filter, and (2) to sequentially
interleave these N samples inside the sampling interval T,. Indeed, this latter function is
the essence of the time-division multiplexing operation. Following the commutation pro-
cess, the multiplexed signal is applied to a pulse modulator, the purpose of which is to
transform the multiplexed signal into a form suitable for transmission over the common
channel. It is clear that the use of time-division multiplexing introduces a bandwidth ex-
pansion factor N, because the scheme must squeeze N samples derived from N independent
message sources into a time slot equal to one sampling interval. At the receiving end of
the system, the received signal is applied to a pulse demodulator, which performs the
reverse operation of the pulse modulator. The narrow samples produced at the pulse de-
modulator output are distributed to the appropriate low-pass reconstruction filters by
means of a decommutator, which operates in synchronism with the commutator in the
transmitter. This synchronization is essential for a satisfactory operation of the system.

The way this synchronization is implemented depends naturally on the method of pulse
modulation used to transmit the multiplexed sequence of samples.

The TDM system is highly sensitive to dispersion in the common channel, that is, to
variations of amplitude with frequency or lack of proportionality of phase with frequency.
Accordingly, accurate equalization of both magnitude and phase responses of the channel
i necessary to ensure a satisfactory operation of the system;

29




Low-pass

Netg {anti-aliasing)

Low-pass
(reconsruction)

! filters filters Message
Inputs sehroaiad outputs
o« [ S S SO . e s LPF 1

\
N
a | Pul Communicati Pul ¢ )\\ I \
uise mmunication uise
2 L modulator channel  [~| demodulator \ } LPF .2
\
o N o /‘ S %
Nl PF Commutater Decommutator LPF >N
= Clack pulses Clock pulses
FIGURE Block diagram of TDM system.

TDM is immune to nonlinearities in the channel as a source of crosstalk. The reason
for this behaviour is that different message signals are not simultaneously applied to the
channel.

Introduction to Delta Modulation

PCM transmits all the bits which are used to code the
sample. Hence signaling rate and transmission channel bandwidth are large in PCM.
To overcome this problem Delta Modulation is used.

Delta Modulation

Operating Principle of DM

Delta modulation transmits only one bit per sample. That is the present sample
value is compared with the previous sample value and the indication,whether the
amplitude is increased or decreased is sent. Input signal x{f) is approximated to step
signal by the delta modulator. This step size is fixed . The difference between the
input signal x(f) and staircase approximated signal confined to two levels, ie.
+8and - 8. If the difference is positive, then approximated signal is increased by one
step i.e. '6. If the difference is negative, then approximated signal is reduced by '6.
When the step is reduced, ‘0" is transmitted and if the step is increased, ‘1° is
transmitted. Thus for each sample, only one binary bit is transmitted. Fig. shows
the analog signal x(f) and its staircase approximated signal by the delta modulator.
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Fig. Delta modulation waveform

The principle of delta modulation can be explained by the following set of
equations. The error between the sampled value of x(f) and last approximated sample
is given as,

e(nT) = x(nT,)-x(nT,) - (1)
Here, e(nT.) = Error at present sample
x(nT,) = Sampled signal of x(!)
X(nT,) = Last sample approximation of the staircase waveform.
We can call u(nT,) as the present sample approximation of staircase output.
Then, u[(n-1)T,] = x(nT,) (2
= Last sample approximation of staircase waveform.

Let the quantity b(nT,) be defined as,
b(nT,) = dsgnle(nT,)] 0 3)

That is depending on the sign of error ¢(nT,) the sign of step size & will be
decided. In other words,

b(nT,) = +8 if x(nT,) =z x(nT,)
= -8 if x(uT,) < ¥(nT,) (4
If b(nT,) = +5; binary ‘1’ is transmitted
and if b(nT,) -3 ; binary ‘0’ is transmitted.
T, = Sampling interval.

5
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DM Transmitter
Fig. (a) shows the transmitter based on equations 3to 5.
The summer in the accumulator adds quantizer output (+8) with the previous
sample approximation. This gives present sample approximation. i.e.,
u(nT,) =u(nT, -T,)+[£8] or
= u[(n-1T,]+b(nT,) .. ( 5)
The previous sample approximation u[(n-1)T,] is restored by delaying one

sample period T,. The sampled input signal x(nT,) and staircase approximated signal
¥(nT,) are subtracted to get error signal e(nT,).

S e Error
amp e(kT
input + T rorabi] bikTy) -
"“"—"(E}_ ™ quantizer Oulput
kT - .5
O 5 O S
i ]
! k=1)T # |
E ultk-1) ) +(§ -l*i"--— Summer
' :
: Del "
i ay - 1
: T:., U{kTH] :
]
Accumulator
{a)
Accumulator

Input Lowpass L s output

fittar

Fig. (a) Delta modulation transmitter and
{b) Deita modulation receiver
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Depending on the sign of ¢(nT,) one bit quantizer produces an output step of +6
or - 6. If the step size is +§, then binary ‘1’ is transmitted and if it is -, then binary
‘0 is transmitted.

DM Receiver

At the receiver shown in Fig. (b), the accumulator and low-pass filter are
used. The accumulator generates the staircase approximated signal output and is
delayed by one sampling period T,. It is then added to the input signal. If input is
binary ‘1’ then it adds +& step to the previous output (which is delayed). If input is
binary ‘0" then one step '8 is subtracted from the delayed signal. The low-pass filter
has the cutoff frequency equal to highest frequency in x(f). This filter smoothen the
staircase signal to reconstruct x (f).

Advantages and Disadvantages of Delta Modulation

Advantages of Delta Modulation
The delta modulation has following advantages over PCM,

1. Delta modulation transmits only one bit for one sample. Thus the signaling
rate and transmission channel bandwidth is quite small for delta modulation.

2. The transmitter and receiver implementation is very much simple for delta
modulation. There is no analog to digital converter involved in delta
modulation.

Disadvantages of Delta Modulation

Granular noisa

Slope - overioad
distortion

Staircase I ol .
appmximal_igne-"' K : S
u(t) : T
Fig. Quantization errors in delta modulation

The delta modulation has two drawbacks -
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Slope Overload Distortion (Startup Error)

This distortion arises because of the large dynamic range of the input signal.

As can be seen from Fig. the rate of rise of input signal x(t) is so high that
the staircase signal cannot approximate it, the step size '6' becomes too small for
staircase signal u (f) to follow the steep segment of x(f). Thus there is a large error
between the staircase approximated signal and the original input signal x(t). This error
is called slope overload distortion. To reduce this error, the step size should be increased
when slope of signal of x(t) is high.

Since the step size of delta modulator remains fixed, its maximum or minimum
slopes occur along straight lines. Therefore this modulator is also called Linear Delta
Modulator (LDM).

Granular Noise (Hunting)

Granular noise occurs when the step size is too large compared to small variations
in the input signal. That is for very small variations in the input signal, the staircase

signal is changed by large amount () because of large step size. Fig shows that
when the input signal is almost flat, the staircase signal u (t) keeps on oscillating by =+
around the signal. The error between the input and approximated signal is called
granular noise, The solution to this problem is to make step size small

Thus large step size is required to accommodate wide dynamic range of the input
signal (to reduce slope overload distortion) and small steps are required to reduce
granular noise. Adaptive delta modulation is the meodification to overcome these
errors.

Adaptive Delta Modulation

Operating Principle
To overcome the quantization errors due to slope overload and granular noise, the
step size (8) is made adaptive to variations in the input signal x (). Particularly in the
steep segment of the signal x(t), the step size is increased. When the inpiutt is varying
slowly, the step size is reduced. Then the method is called Adaptive Delta Modulation
(ADM).

The adaptive delta modulators can take continuous changes in step size or discrete
changes in step size.

Transmitter and Receiver

Fig. (a) shows the transmitter and (b) shows receiver of adaptive delta
modulator. The logic for step size control is added in the diagram. The step size
increases or decreases according to certain rule depending on one bit quantizer output.
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Fig. Adaptive delta modulator {a) Transmitter (b) Recaiver

For example if one bit quantizer output is high (1), then step size may be doubled for
next sample. If one bit quantizer output is low, then step size may be reduced by one
step. Fig. shows the waveforms of adaptive delta modulator and sequence of bits
transmitted.

In the receiver of adaptive delta modulator shown in Fig. (b) the first part
generates the step size from each incoming bit. Exactly the same process is followed as
that in transmitter. The previous input and present input decides the step size. It is
then given to an accumulator which builds up staircase waveform. The low-pass filter
then smoothens out the staircase waveform to reconstruct the smooth signal.

ety 0 i
= =

Binaryﬂnablt 1.1 1. : Time— |
quantzedsignar=] 11 1{ 1{1{ol~Fojolofiodafor ] |

Fig. Waveforms of adaptive delta modulation
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Advantages of Adaptive Delta Modulation
Adaptive delta modulation has certain advantages over delta modulation. i.e.,

1. The signal to noise ratio is better than ordinary delta modulation because of
the reduction in slope overload distortion and granular noise.

2. Because of the variable step size, the dynamic range of ADM is wide.
3. Utilization of bandwidth is better than delta modulation.

Plus other advantages of delta modulation are, only one bit per sample is required
and simplicity of implementation of transmitter and receiver.

Condition for Slope overload distortion occurrence:

Slope overload distortion will occur if

5
Am > T

where T_ is the sampling period.

Let the sine wave be represented as,
x(t) = A, sin(2nf, 1)
Slope of x() will be maximum when derivative of x(f) with respect to 't’ will be
maximum. The maximum slope of delta modulator is given
Step size
Sampling period

8 (1)

T

Max. slope =

Slope overload distortion will take place if slope of sine wave is greater than slope
of delta modulator i.e.

d &
nmxlﬁ 1{4 > T

max1% Ay, sin(2r £, l‘* >

i

o3| en

max|A,, 2r f, cos(2r f,, 1] >

Ay 2nf, >

or
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Expression for Signal to Quantization Noise power ratio for Delta
Modulation:

To obtain signal power :
slope overload distortion will not occur if
< 5
m 2nf,. T,
Here A, is peak amplitude of sinusoided signal
& is the step size
fin is the signal frequency and
T, is the sampling period.
From above equation, the maximum signal amplitude will be,

A

&
Ay = === e 1
il zvaS { }
Signal power is given as,
va
F=%

Here V is the rms value of the signal. Here V = %— Hence above equation

becomes,

- (%) /-

Normalized signal power is obtained by taking R = 1. Hence,
Az

P =
2

Putting for A, from equation 1

P Jn
wegm o e @
This is an expression for signal power in delta modulation.
(ii) To obtain noise power

We know that the maximum
quantization error in delta
modulation is equal to step size
6. Let the quantization error be
uniformly distributed over an
interval [-8,8] This is shown in
Fig. From this figure the

-d 8 PDF of quantization error can be
expressed as,
Fig. Uniform distribution of quantization error

f.(e)
i

1_ .1
5-(-08) 25

P
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0 for e<d
fo () = -2% for -8<e<d
0 for e>d

The noise power is given as,

2.
noise

Noise power = —R

Here V2 .  is the mean square value of noise voltage. Since noise is defined by

random variable €' and PDF f (g), its mean square value is given as,
mean square value = E[e2]=e?

mean square value is given as,

E[e?] = }'Ezj‘; (€)de

From equation 3

E[e?] =

1
ey
m

(]
|
&

Hence noise power will be,
. 52
noise power = 5 /R
Normalized noise power can be obtained with R = 1. Hence,
82 (5)

noise power = 5
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This noise power is uniformly

S(f) distributed over -f, to f; range. This is

i illustrated in Fig. At the output of

hE delta modulator receiver there is

E lowpass reconstruction filter whose

i cutoff frequency is "W'. This cutoff

frequency is equal to highest signal

t frequency. The reconstruction filter

passes part of the noise power at the

output as Fig. From the geometry

Fig. PSD of noise of 11;; g output noise power will
be,

2
QOutput noise power= W x noise power = W,s

A 53
We know that f; = Tl'_‘ hence above equation becomes,
L]

WIS2 e, (6)
3

Cutput noise power=

(lil) To obtain signal to noise power ratio
Signal to noise power ratio at the output of delta modulation receiver is given as,

§ _  Normalized signal power
N Normalized noise power

From equation 2.  and equation 6

32
S _ 8nlfil?
N WT.82
3

EE T E— (7)
N = 8RBT

This is an expression for signal to noise power ratio in delta modulation.
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UNIT-2
DIGITAL MODULATION TECHNIQUES

Digital Modulation provides more information capacity, high data security, quicker system
availability with great quality communication. Hence, digital modulation techniques have a greater
demand, for their capacity to convey larger amounts of data than analog ones.

There are many types of digital modulation techniques and we can even use a combination of these
techniques as well. In this chapter, we will be discussing the most prominent digital modulation
techniques.

if the information signal is digital and the amplitude (IV of the carrier is varied proportional to
the information signal, a digitally modulated signal called amplitude shift keying (ASK) is
produced.
If the frequency (f) is varied proportional to the information signal, frequency shift keying (FSK) is
produced, and if the phase of the carrier (0) is varied proportional to the information signal,
phase shift keying (PSK) is produced. If both the amplitude and the phase are varied proportional to
the information signal, quadrature amplitude modulation (QAM) results. ASK, FSK, PSK, and

QAM are all forms of digital modulation:

WD =Vsin(2x - ft + 6)

.

ASK FSK PSK
R i

b QAM

a simplified block diagram for a digital modulation system.

Amplitude Shift Keying
The amplitude of the resultant output depends upon the input data whether it should be a zero level

or a variation of positive and negative, depending upon the carrier frequency.

Amplitude Shift Keying (ASK) is a type of Amplitude Modulation which represents the binary

data in the form of variations in the amplitude of a signal.

Following is the diagram for ASK modulated waveform along with its input.




1v

Ov

Input binary sequence

- — M1

ASK Modulated output wave

Any modulated signal has a high frequency carrier. The binary signal when ASK is modulated,
gives a zero value for LOW input and gives the carrier output for HIGH input.
Mathematically, amplitude-shift keying is

=

. A
Vast)() = [1 1',,‘(()][/_) CO.\‘((:)(():]

where vask(t) = amplitude-shift keying wave
vm(t) = digital information (modulating) signal (volts)
AJ2 = unmodulated carrier amplitude (volts)

oc= analog carrier radian frequency (radians per second, 2nfct)

In above Equation, the modulating signal [vm(t)] is a normalized binary waveform, where + 1 V =

logic 1 and -1 V = logic 0. Therefore, for a logic 1 input, vm(t) = + 1 V, Equation 2.12 reduces to

<

\}(N)(z) = [.' + ]][%C()S((u‘.l):'

= A cos(w.t)

Mathematically, amplitude-shift keying is (2.12) where vask(t) = amplitude-shift keying wave

vm(t) = digital information (modulating) signal (volts) A/2 = unmodulated carrier amplitude (volts)
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wc= analog carrier radian frequency (radians per second, 2xfct) In Equation 2.12, the modulating
signal [vm(t)] is a normalized binary waveform, where + 1 V = logic 1 and -1 V = logic O.
Therefore, for a logic 1 input, vm(t) =+ 1V, Equation 2.12 reduces to and for a logic 0 input, vm(t)
= -1 V,Equation reduces to

Vas(t) = [1 - I]IVI:C().\(U»(I)J

—

Thus, the modulated wave vask(t),is either A cos(wct) or 0. Hence, the carrier is either "on “or
"off," which is why amplitude-shift keying is sometimes referred to as on-off keying (OOK).

it can be seen that for every change in the input binary data stream, there is one change in the ASK
waveform, and the time of one bit (tb) equals the time of one analog signaling element (t,).
B=fb/1=1b baud = fb/1 = fb

Example :
Determine the baud and minimum bandwidth necessary to pass a 10 kbps binary signal using
amplitude shift keying. 10Solution For ASK, N = 1, and the baud and minimum bandwidth are

determined from Equations 2.11 and 2.10, respectively:

B =10,000/1=10,000
baud = 10, 000 /1 = 10,000
The use of amplitude-modulated analog carriers to transport digital information is a relatively low-
quality, low-cost type of digital modulation and, therefore, is seldom used except for very low-
speed telemetry circuits.
ASK TRANSMITTER:

Mixer

Modulation signal ASK modulated wave
mit) Sask(t)

Carrier wave

Cit)




The input binary sequence is applied to the product modulator. The product modulator amplitude
modulates the sinusoidal carrier .it passes the carrier when input bit is ‘1’ .it blocks the carrier when

input bit is ‘0.’
Coherent ASK DETECTOR:

FREQUENCYSHIFT KEYING
The frequency of the output signal will be either high or low, depending upon the input data

applied.

Frequency Shift Keying (FSK) is the digital modulation technique in which the frequency of the
carrier signal varies according to the discrete digital changes. FSK is a scheme of frequency

modulation.

Following is the diagram for FSK modulated waveform along with its input.

1v
Ov
Input binary sequence time
1v
Ov
-1V time
f1 f2

FSK Modulated output wave

The output of a FSK modulated wave is high in frequency for a binary HIGH input and is low in

frequency for a binary LOW input. The binary 1s and Os are called Mark and Space frequencies.

FSK is a form of constant-amplitude angle modulation similar to standard frequency modulation
(FM) except the modulating signal is a binary signal that varies between two discrete voltage levels
rather than a continuously changing analog waveform.Consequently, FSK is sometimes called
binary FSK (BFSK). The general expression for FSK is
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where vf&k(” = Vc COS{QI[U;' 1 Vm(tj ﬁﬂ! ]I
vrsk(t) = binary FSK waveform
V. = peak analog carrier amplitude (volts)

fc = analog carrier center frequency (hertz)
f=peak change (shift)in the analog carrier frequency(hertz)
Vm(t) = binary input (modulating) signal (volts)

From Equation 2.13, it can be seen that the peak shift in the carrier frequency ( f) is proportional to
the amplitude of the binary input signal (vm[t]), and the direction of the shift is determined by the
polarity.

The modulating signal is a normalized binary waveform where a logic 1 =+ 1 V and a logic 0 = -1

V. Thus, for a logic | input, vm(t) = + 1, Equation 2.13 can be rewritten as

(0 = V.cos[2n(f,. + A1

For a logic 0 input, vm(t) = -1, quatfon becomes

VD) = Vo cos|2n(f, — Af]

With binary FSK, the carrier center frequency (fc) is shifted (deviated) up and down in the

frequency domain by the binary input signal as shown in Figure 2-3.

fs fe Sm

Logic 1

Logic 0 Binary input
. signal
FIGURE:FSKmrthe frequency domain
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As the binary input signal changes from a logic O to a logic 1 and vice versa, the output frequency
shifts between two frequencies: a mark, or logic 1 frequency (fm), and a space, or logic 0 frequency
(fs). The mark and space frequencies are separated from the carrier frequency by the peak frequency
deviation ( f) and from each other by 2 f.

Frequency deviation is illustrated in Figure 2-3 and expressed mathematically as

f: |fm —fsl / 2 (214)

where  f = frejuency deviation (hertz)
|fm— fs| = absolute difference between the mark and space frequencies (hertz)

Figure 2-4a shows in the time domain the binary input to an FSK modulator and the corresponding
FSK output.

When the binary input (f») changes from a logic 1 to a logic 0 and vice versa, the FSK output

frequency shifts from a mark ( fn) to a space (fs) frequency and vice versa.

In Figure 2-4a, the mark frequency is the higher frequency (fc + f) and the space frequency is the

lower frequency (fc- f), although this relationship could be just the opposite.

Figure 2-4b shows the truth table for a binary FSK modulator. The truth table shows the input and

output possibilities for a given digital modulation scheme.

b
Binary
input t]lof1]of1|ol1|o]1]o0
f 1
\ o 2 | | | | ! ' ! | | g 3
( A | I | TR ¢ ' | binary frequency
g Analog I | input output
output ! A | \ [ : : : '
1 | ' | | ! .
TeTwideSoile Vet st T Tart 9 space {f,)
| mark (f,,)
fm. mark frequency; /. space frequency
(a) (b)
b @]
FIGURE 2-4 FSK in the time domain: (a) waveform: (b) truth
table




FSK Bit Rate, Baud, and Bandwidth

In Figure 2-4a, it can be seen that the time of one bit (tv) is the same as the time the FSK output is a
mark of space frequency (ts). Thus, the bit time equals the time of an FSK signaling element, and

the bit rate equals the baud.
The baud for binary FSK can also be determined by substituting N = 1 in Equation 2.11:

baud = fo/ 1 =fy
The minimum bandwidth for FSK is given as
B=|(fs— fo) — (fm— fo)|
=|(fs— fm)| + 2fp
and since |(fs— fm)| equals 2 f, the minimum bandwidth can be approximated as
B=2(f+fy) (2.15)
where
B= minimum Nyquist bandwidth (hertz)
f= frequency deviation |(fm— fs)| (hertz)
fo = input bit rate (bps)
Example 2-2

Determine (a) the peak frequency deviation, (b) minimum bandwidth, and (c) baud for a binary
FSK signal with a mark frequency of 49 kHz, a space frequency of 51 kHz, and an input bit rate of
2 kbps.

Solution

a. The peak frequency deviation is determined from Equation 2.14:

f=|149kHz - 51 kHz| / 2 =1 kHz
b. The minimum bandwidth is determined from Equation 2.15:
B = 2(100+ 2000)
=6 kHz




c. For FSK, N = 1, and the baud is determined from Equation 2.11 as
baud = 2000 / 1 = 2000

FSK TRANSMITTER:

Figure 2-6 shows a simplified binary FSK modulator, which is very similar to a conventional FM
modulator and is very often a voltage-controlled oscillator (VCO).The center frequency (fc) is
chosen such that it falls halfway between the mark and space frequencies.

Lo FSK output
ciy JUuyuL FSK modulator
it e (VCO) e
k1 = HZ/V
|
~Af : +Af
|
Sm fe /s
Logic O
Logic 1

A logic 1 input shifts the VCO output to the mark frequency, and a logic 0 input shifts the VCO
output to the space frequency. Consequently, as the binary input signal changes back and forth
between logic 1 and logic 0 conditions, the VCO output shifts or deviates back and forth between
the mark and space frequencies.

NRZ R FSK output
binary JuUut FSK modulator
input S (VCO) e
k‘ = HZIV
1
| —Af : +Af
| |
fm fc f&‘
Logic 0 l
Logic 1

FIGURE 2-6 FSK modulator

A VCO-FSK modulator can be operated in the sweep mode where the peak frequency deviation is
simply the product of the binary input voltage and the deviation sensitivity of the VCO.




With the sweep mode of modulation, the frequency deviation is expressed mathematically as
f = vm(t)ki (2-19)
Vm(t) = peak binary modulating-signal voltage (volts)

ki = deviation sensitivity (hertz per volt).
FSK Receiver

FSK demodulation is quite simple with a circuit such as the one shown in Figure 2-7.

Analog mark or

space frequency Rectified signal

fe ~

) ™ | Envelope | dc

p ~BPF I detector i,,,,_f“;\_\
FSK input-— ;;ftg: ¢ ~ Data output

m 7

_____ | BPF Ir\" Envelope | dc T

detector Comparator

FIGURE 2-7 Noncoherent FSK demodulator

The FSK input signal is simultaneously applied to the inputs of both bandpass filters (BPFs)
through a power splitter. The respective filter passes only the mark or only the space frequency on to
its respective envelope detector.The envelope detectors, in turn, indicate the total power in each

passband, and the comparator responds to the largest of the two powers.This type of FSK detection
is referred to as noncoherent detection.

Figure 2-8 shows the block diagram for a coherent FSK receiver.The incoming FSK signal is

multiplied by a recovered carrier signal that has the exact same frequency and phase as the
transmitter reference.

However, the two transmitted frequencies (the mark and space frequencies) are not generally
continuous; it is not practical to reproduce a local reference that is coherent with both of them.
Consequently, coherent FSK detection is seldom used.

Multiplier

G )

Power -
FSK input —» splitter Carrier >
Multiplier >+~ Dataout

Carrier

FIGURE 2-8 Coherent FSK demodulator




PHASESHIFT KEYING:

The phase of the output signal gets shifted depending upon the input. These are mainly of two
types, namely BPSK and QPSK, according to the number of phase shifts. The other one is DPSK
which changes the phase according to the previous value.

i1 0 0 1 0 1 1 O

Phase shift keying (PSK)

Phase Shift Keying (PSK) is the digital modulation technique in which the phase of the carrier
signal is changed by varying the sine and cosine inputs at a particular time. PSK technique is widely
used for wireless LANS, bio-metric, contactless operations, along with RFID and Bluetooth

communications.
PSK is of two types, depending upon the phases the signal gets shifted. They are —

Binary Phase Shift Keying (BPSK)

This is also called as 2-phase PSK (or) Phase Reversal Keying. In this technique, the sine wave

carrier takes two phase reversals such as 0° and 180°.

BPSK is basically a DSB-SC (Double Sideband Suppressed Carrier) modulation scheme, for

message being the digital information.

Following is the image of BPSK Modulated output wave along with its input.

! Input binary sequence time

time

BPSK Modulated output wave
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Binary Phase-Shift Keying

The simplest form of PSK is binary phase-shift keying (BPSK), where N = 1 and M =
2.Therefore, with BPSK, two phases (2! = 2) are possible for the carrier.One phase represents a
logic 1, and the other phase represents a logic 0. As the input digital signal changes state (i.e., from
altoaOorfroma0toal), the phase of the output carrier shifts between two angles that are
separated by 180°.

Hence, other names for BPSK are phase reversal keying (PRK) and biphase modulation. BPSK
is a form of square-wave modulation of a continuous wave (CW) signal.

R Y i

Binar Level
datay 5| EoFvEiiar Balanced » | Bandpass » Modulated
in (UP to BP) modulator filter PSK output

AV sin(w.)

Buffer
A

f'b sin(m,t)

Reference
carrier
oscillator

FIGURE 2-12 BPSK transmitter
BPSK TRANSMITTER:

Figure 2-12 shows a simplified block diagram of a BPSK transmitter. The balanced modulator acts
as a phase reversing switch. Depending on the logic condition of the digital input, the carrier is
transferred to the output either in phase or 180° out of phase with the reference carrier oscillator.

Figure 2-13 shows the schematic diagram of a balanced ring modulator. The balanced modulator
has two inputs: a carrier that is in phase with the reference oscillator and the binary digital data. For
the balanced modulator to operate properly, the digital input voltage must be much greater than the
peak carrier voltage.

This ensures that the digital input controls the on/off state of diodes D1 to D4. If the binary input is
a logic 1(positive voltage), diodes D 1 and D2 are forward biased and on, while diodes D3 and D4
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are reverse biased and off (Figure 2-13b). With the polarities shown, the carrier voltage is
developed across transformer T2 in phase with the carrier voltage across T

1. Consequently, the output signal is in phase with the reference oscillator.

If the binary input is a logic 0 (negative voltage), diodes DI and D2 are reverse biased and off,
while diodes D3 and D4 are forward biased and on (Figure 9-13c). As a result, the carrier voltage is
developed across transformer T2 180° out of phase with the carrier voltage across T 1.

D1

m™ T2
L ] * @
sin wct Reference D3
Modulated PSK
’\; input D4 output
D2
Binary data in
(a)
m™ D1 (on) T2
+|® *+ D3 and D4 +|® )+
- /'\j (off) ,\J
sin wet sin wet
_— —
Carrier o Carrier o
input - = = = output
D2 (on)
| =
+V (Binary 1)

(b)

-V (Binary 0)
{c)

FIGURE 9-13 (a) Balanced ring modulator; (b) logic 1 input; (c) logic 0 input
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(+90°)

CO8 W t
~$in wet 8in et
. (180°%) (0°)
Binary input | Output phase Logic 0 Logic 1
Logic 0 180°
Logic 1 0°
(a)
=COS Wt
(-90°)
(b)
€OS Gt
+180° @ e - 9 0° Reference
Logic 0 Logic 1
~COS (et

()

FIGURE 2-14 BPSK modulator: (a) truth table; (b) phasor diagram; (c) constellation
diagram

BANDWIDTH CONSIDERATIONS OF BPSK:
In a BPSK modulator. the carrier input signal is multiplied by the binary data.

If + 1V is assigned to a logic 1 and -1 V is assigned to a logic 0, the input carrier (sin wct) is
multiplied by eithera+or-1.

The output signal is either + 1 sin wct or -1 sin wct the first represents a signal that is in phase with
the reference oscillator, the latter a signal that is 180° out of phase with the reference
oscillator.Each time the input logic condition changes, the output phase changes.

Mathematically, the output of a BPSK modulator is proportional to
BPSK output = [sin (21rfat)] x [sin (217fct)] (2.20)

where
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fa = maximum fundamental frequency of binary input (hertz)

fc = reference carrier frequency (hertz)
Solving for the trig identity for the product of two sine functions,
0.5cos[21(fc — fa)t] — 0.5cos[21r(fc + f)t]

Thus, the minimum double-sided Nyquist bandwidth (B) is

fc + fa fc+ fa
-f. +f

-(fc + fa) or o
2fa

and because fa=fy/ 2, where fo = input bit rate,
where B is the minimum double-sided Nyquist bandwidth.

Figure 2-15 shows the output phase-versus-time relationship for a BPSK waveform. Logic 1 input
produces an analog output signal with a 0° phase angle, and a logic 0 input produces an analog
output signal with a 180° phase angle.

As the binary input shifts between a logic 1 and a logic 0 condition and vice versa, the phase of the
BPSK waveform shifts between 0° and 180°, respectively.

BPSK signaling element (ts) is equal to the time of one information bit (tv), which indicates that the
bit rate equals the baud.

-

sinact ~-sin ot 8in ot -8in ot sin wgt ~sin @t
o 180 0 180 0 180 - Degrees
0 x o x 0 x Radians

FIGURE 2-15 Output phase-versus-time relationship for a BPSK modulator

14




Example:

For a BPSK modulator with a carrier frequency of 70 MHz and an input bit rate of 10 Mbps,
determine the maximum and minimum upper and lower side frequencies, draw the output spectrum,
de-termine the minimum Nyquist bandwidth, and calculate the baud..

Solution
Substituting into Equation 2-20 yields
output = [sin (21rfat)] X [sin (21rft)]; fa=fo/ 2 =5 MHz

=[sin 211(5MH2z)t)] x [sin 211(70MH2z)t)]
=0.5cos[21(70MHz — 5MHZz)t] — 0.5cos[21T(70MHz + 5MHZz)t]
lower side frequency upper side frequency

Minimum lower side frequency (LSF):
LSF=70MHz - 5MHz = 65MHz
Maximum upper side frequency (USF):
USF =70 MHz + 5 MHz = 75 MHz

Therefore, the output spectrum for the worst-case binary input conditions is as follows: The
minimum Nyquist bandwidth (B) is

<« B=10MHz - — >
:
’.
65 MHz 70 MHz 75 MHz
(Suppressed)

B =75 MHz - 65 MHz = 10 MHz
and the baud = fp or 10 megabaud.

BPSK receiver:.

Figure 2-16 shows the block diagram of a BPSK receiver.
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The input signal maybe+ sin wct or - sin wct .The coherent carrier recovery circuit detects and
regenerates a carrier signal that is both frequency and phase coherent with the original transmit
carrier.

The balanced modulator is a product detector; the output is the product d the two inputs (the BPSK
signal and the recovered carrier).

The low-pass filter (LPF) operates the recovered binary data from the complex demodulated signal.

FIGURE 2-16 Block diagram of a BPSK receiver

UP

 sin(m.t) 8 -
BPSK .| spF »| Balanced | LPF | Level o By
input modulator converter ala 0
output
A A
sin(m.t) Y
Clock

Y

recovery

Coherent
carrier
recovery

Mathematically, the demodulation process is as follows.
For a BPSK input signal of + sin wct (logic 1), the output of the balanced modulator is
output = (Sin wet )(sin wet) = sin®wct (2.21)
or sinwct = 0.5(1 — cos 2wet) = 0.5
filtered out
leaving output =+ 0.5V = logic 1

It can be seen that the output of the balanced modulator contains a positive voltage (+[1/2]V) and a
cosine wave at twice the carrier frequency (2 wct ).

The LPF has a cutoff frequency much lower than 2 wd, and, thus, blocks the second harmonic of
the carrier and passes only the positive constant component. A positive voltage represents a
demodulated logic 1.

For a BPSK input signal of -sin wct (logic 0), the output of the balanced modulator is
output = (-sin wet )(sin wet) = sinwct

or

sinwt = -0.5(1 — cos 2wdt) = 0.5
I

filtered out
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leaving
output =-0.5V =logic 0

The output of the balanced modulator contains a negative voltage (-[I/2]V) and a cosine wave at
twice the carrier frequency (2wct).

Again, the LPF blocks the second harmonic of the carrier and passes only the negative constant
component. A negative voltage represents a demodulated logic O.

QUADRATURE PHASE SHIFT KEYING (QPSK):

This is the phase shift keying technique, in which the sine wave carrier takes four phase reversals
such as 0°, 90°, 180°, and 270°.

If this kind of techniques are further extended, PSK can be done by eight or sixteen values also,
depending upon the requirement. The following figure represents the QPSK waveform for two bits
input, which shows the modulated result for different instances of binary inputs.

Carrier / Channel

Modulating value from two bits

0 2 1 3
(00) (10) (01) (11)

Modulated
Result

QPSK is a variation of BPSK, and it is also a DSB-SC (Double Sideband Suppressed Carrier)
modulation scheme, which sends two bits of digital information at a time, called as bigits.
Instead of the conversion of digital bits into a series of digital stream, it converts them into bit-pairs.

This decreases the data bit rate to half, which allows space for the other users.

QPSK transmitter.

A block diagram of a QPSK modulator is shown in Figure 2-17Two bits (a dibit) are
clocked into the bit splitter. After both bits have been serially inputted, they are simultaneously
parallel outputted.
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The | bit modulates a carrier that is in phase with the reference oscillator (hence the name "I" for "in
phase" channel), and theQ bit modulate, a carrier that is 90° out of phase.

For alogic 1 =+ 1V and a logic 0= - 1 V, two phases are possible at the output of the | balanced
modulator (+sin wct and - sin wct), and two phases are possible at the output of the Q balanced
modulator (+cos wct), and (-cos wct).

When the linear summer combines the two quadrature (90° out of phase) signals, there are four
possible resultant phasors given by these expressions: + sin wct + €0S wct, + Sin wct - €OS Wet, -Sin
wct + cos wet, and -sin wct - cos wt.

I channel f,/2 Balanced | 1 sin @t
Logic 1= +1V modulator
LogicO=-1V
o i Bandpass
r:avty. c;\bmt 8in mt filter
Reference
carrier
oscillator
I (sin wt) QPSK
Bit Linear output
splitte summer BPF
Q
]
90° phase
shift
Bit 2 Bandpass
clock cos wxt el
Logic 1=41V L
Logic O=-1V Balanced
Q channel f,/2 modulator | 4oog @t

FIGURE 2-17 QPSK modulator

Example:

For the QPSK modulator shown in Figure 2-17, construct the truthtable, phasor diagram, and
constellation diagram.

Solution

For a binary data input of Q = O and I= 0, the two inputs to the Ibalanced modulator are -1 and sin
wct, and the two inputs to the Q balanced modulator are -1 and cos wt.

Consequently, the outputs are
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| balanced modulator =(-1)(sin wct) = -1 sin wct

Q balanced modulator =(-1)(cos wct) = -1 cos wct and the output of the linear summer is
-1 coS Wt - 1 sin wct = 1.414 sin(wct - 135°)

For the remaining dibit codes (01, 10, and 11), the procedure is the same. The results are shown in
Figure 2-18a.

Q 1 Q 1
cOs met - 8in et cos ot ©O8 ot + sin it

1 0
sin (ot + 135°)

Binary QPSK S
input output
Q 1 phaso
0 0 -135*
0 1 ~45° Q 1
1 0 +135* ~COS (et ~ Sin ot =C0s st ~cO8 et + 8in et
LI | +45°
0 0 0 1
sin (et - 135%) $in (it - 45%)
(8)
(b)
10 COS it n
el ' - o
-8 gt == e ———— in wt
i
i
i
® ' L J
00 ~CO8 .t 01

FIGURE 2-18 QPSK modulator: (a) truth table; (b) phasor diagram; (c) constellation
diagram

In Figures 2-18b and c, it can be seen that with QPSK each of the four possible output phasors has
exactly the same amplitude. Therefore, the binary information must be encoded entirely in the

phase of the output signal
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Figure 2-18b, it can be seen that the angular separation between any two adjacent phasors in QPSK
is 90°.Therefore, a QPSK signal can undergo almost a+45° or -45° shift in phase during
transmission and still retain the correct encoded information when demodulated at the receiver.

Figure 2-19 shows the output phase-versus-time relationship for a QPSK modulator.

Dibit Q 1 Q 1 Q 1 Q
input 1 0 0 1 0

' 1
| | 1 1 1
| 1

|

apsK (\ NE -
ENA P A

+135°

-45° ! +45° ! -135° ' Degrees

FIGURE 2-19 Output phase-versus-time relationship for a PSK modulator
Bandwidth considerations of QPSK

With QPSK, because the input data are divided into two channels, the bit rate in either the I or the Q
channel is equal to one-half of the input data rate (fu/2) (one-half of fu/2 = fu/4).

QPSK RECEIVER:
The block diagram of a QPSK receiver is shown in Figure 2-21

The power splitter directs the input QPSK signal to the | and Q product detectors and the carrier
recovery circuit. The carrier recovery circuit reproduces the original transmit carrier oscillator
signal. The recovered carrier must be frequency and phase coherent with the transmit reference
carrier. The QPSK signal is demodulated in the I and Q product detectors, which generate the
original I and Q data bits. The outputs of the product detectors are fed to the bit combining circuit,
where they are converted from parallel | and Q data channels to a single binary output data stream.
The incoming QPSK signal may be any one of the four possible output phases shown in Figure 2-
18. To illustrate the demodulation process, let the incoming QPSK signal be -sin wct + cos wct.
Mathematically, the demodulation process is as follows.
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1 Channel Product (oin @t) {-ein ot « cos at) =12V Bogic 0)
preprp—— detector LPF
=#in @t + cOs 0l sin ot
;"“"'{ Power : L_‘
sigaat e splitter dwin L
|°| 1 | binary
deta
+90*
[}
COs ! L Clock
recovery
~in et + COS it Product o
Q channel (cos o) (-sin et » 008 mt) +1/2V (logic 1)

FIGURE 2-21 QPSK receiver

The receive QPSK signal (-sin w¢t + cos wct) is one of the inputs to the I product detector. The
other input is the recovered carrier (sin wct). The output of the | product detector is

[ = (—sin wt + cos w.t)(sin 1)

—

- e

QPSK input signal carrier

RS

B | —

—sin” w + (cos w 1)(sin 1)

—

(—sin w)(sin ) + (cos w1)(sin w 1)

(filtered out) (equals 0)

B9 | -

cos 2wt +

1| —

1
- =V (logic 0)

sin 2wt +

|
2sin 0

1 l . 1.
—;)—(l - cos 2w.t) + ;sm(m( + w )t + ;sm(w(. - W)

(2.23)

Again, the receive QPSK signal (-sin wct + cos wct) is one of the inputs to the Q product detector.
The other input is the recovered carrier shifted 90° in phase (cos wct). The output of the Q product

detector is
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Q = (—sin wt + cos w.1)(cos wr)

— o J
— ~"

QPSK mnput signal carrier

= cos’ wt — (sin w,t)(cos w1)

1 (I E :
;(l + cos 2w,t) — ;sm(w, + W)t — 7sm(w‘ — W)

-~ —

(filtered out) (equals 0)

| 1 |
=~ + —cos 2wt — =sin 2wt — =sin 0
Q 5 T 5c0s 2wt — Tsin 2w 1 _,sm(

-— - . -

| ;
- 2V(loglc 1) (2.2_”

The demodulated I and Q bits (0 and 1, respectively) correspond to the constellation diagram and
truth table for the QPSK modulator shown in Figure 2-18.

DIFFERENTIAL PHASE SHIFT KEYING (DPSK):

In DPSK (Differential Phase Shift Keying) the phase of the modulated signal is shifted relative to
the previous signal element. No reference signal is considered here. The signal phase follows the
high or low state of the previous element. This DPSK technique doesn’t need a reference oscillator.

The following figure represents the model waveform of DPSK.

0 0 1 1 0 1 o) 0 0 1 0

It is seen from the above figure that, if the data bit is LOW i.e., 0, then the phase of the signal is not
reversed, but is continued as it was. If the data is HIGH i.e., 1, then the phase of the signal is

reversed, as with NRZI, invert on 1 (a form of differential encoding).
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If we observe the above waveform, we can say that the HIGH state represents an M in the
modulating signal and the LOW state represents a W in the modulating signal.

The word binary represents two-bits. M simply represents a digit that corresponds to the number of
conditions, levels, or combinations possible for a given number of binary variables.

This is the type of digital modulation technique used for data transmission in which instead of one-
bit, two or more bits are transmitted at a time. As a single signal is used for multiple bit
transmission, the channel bandwidth is reduced.

DBPSK TRANSMITTER.:

Figure 2-37a shows a simplified block diagram of a differential binary phase-shift keying
(DBPSK) transmitter. An incoming information bit is XNORed with the preceding bit prior to
entering the BPSK modulator (balanced modulator).

For the first data bit, there is no preceding bit with which to compare it. Therefore, an initial
reference bit is assumed. Figure 2-37b shows the relationship between the input data, the XNOR
output data, and the phase at the output of the balanced modulator. If the initial reference bit is
assumed a logic 1, the output from the XNOR circuit is simply the complement of that shown.

In Figure 2-37b, the first data bit is XNORed with the reference bit. If they are the same, the XNOR
output is a logic 1; if they are different, the XNOR output is a logic 0. The balanced modulator
operates the same as a conventional BPSK modulator; a logic | produces +sin wct at the output, and
A logic 0 produces —sin wct at the output.
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FIGURE 9-40 [a) Clock recovery circuit. (b) tming diagram
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FIGURE 2-37 DBPSK modulator (a) block diagram (b) timing diagram

BPSK RECEIVER:

Figure 9-38 shows the block diagram and timing sequence for a DBPSK receiver. The received
signal is delayed by one bit time, then compared with the next signaling element in the balanced
modulator. If they are the same. J logic 1(+ voltage) is generated. If they are different, a logic 0 (-
voltage) is generated. [f the reference phase is incorrectly assumed, only the first demodulated bit is
in error. Differential encoding can be implemented with higher-than-binary digital modulation
schemes, although the differential algorithms are much more complicated than for DBPS K.

The primary advantage of DBPSK is the simplicity with which it can be implemented. With
DBPSK, no carrier recovery circuit is needed. A disadvantage of DBPSK s, that it requires
between 1 dB and 3 dB more signal-to-noise ratio to achieve the same bit error rate as that of
absolute PSK.
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FIGURE 2-38 DBPSK demodulator: (a) block diagram; (b) timing sequence

COHERENT RECEPTION OF FSK:

The coherent demodulator for the coherent FSK signal falls in the general form of coherent
demodulators described in Appendix B. The demodulator can be implemented with two correlators
as shown in Figure 3.5, where the two reference signals are cos(27r f t) and cos(27r fit). They must
be synchronized with the received signal. The receiver is optimum in the sense that it minimizes the
error probability for equally likely binary signals. Even though the receiver is rigorously derived in
Appendix B, some heuristic explanation here may help understand its operation. When s 1 (t) is
transmitted, the upper correlator yields a signal 1 with a positive signal component and a noise
component. However, the lower correlator output 12, due to the signals' orthogonality, has only a
noise component. Thus the output of the summer is most likely above zero, and the threshold
detector will most likely produce a 1. When s2(t) is transmitted, opposite things happen to the two
correlators and the threshold detector will most likely produce a 0. However, due to the noise nature
that its values range from -00 to m, occasionally the noise amplitude might overpower the signal
amplitude, and then detection errors will happen. An alternative to Figure 3.5 is to use just one
correlator with the reference signal cos (27r ft) - cos(2s f2t) (Figure 3.6). The correlator in Figure
can be replaced by a matched filter that matches cos(27r fit) - cos(27r f2t) (Figure 3.7). All
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implementations are equivalent in terms of error performance (see Appendix B). Assuming an

AWGN channel, the received signal is
r(t) = s;(t) +n(t), i=12

where n(t) is the additive white Gaussian noise with zero mean and a two-sided power spectral
density A',/2. From (B.33) the bit error probability for any equally likely binary signals is

= R
_ E\+E; —2p,WE | E;
=@ 2N

where No/2 is the two-sided power spectral density of the additive white Gaussian noise. For
Sunde's FSK signals El = Ez = Eb, pl2 = 0 (orthogonal). thus the error probability is

B
o Q(\/"ivb)

where Eb = A2T/2 is the average bit energy of the FSK signal. The above Pb is plotted in Figure 3.8
where Pb of noncoherently demodulated FSK, whose expression will be given shortly, is also

plotted for comparison.
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Figure: Pb of coherently and non-coherently demodulated FSK signal.

NONCOHERENT DEMODULATION AND ERROR PERFORMANCE:

Coherently FSK signals can be noncoherently demodulated to avoid the carrier recovery.

Noncoherently generated FSK can only be noncoherently demodulated. We refer to both cases as

noncoherent FSK. In both cases the demodulation problem becomes a problem of detecting signals

with unknown phases. In Appendix B we have shown that the optimum receiver is a quadrature

receiver. It can be implemented using correlators or equivalently, matched filters. Here we assume

that the binary noncoherent FSK signals are equally likely and with equal energies. Under these

assumptions, the demodulator using correlators is shown in Figure 3.9. Again, like in the coherent

case, the optimality of the receiver has been rigorously proved (Appendix B). However, we can

easily understand its operation by some heuristic argument as follows. The received signal

(ignoring noise for the moment) with an unknown phase can be written as

5:(t.8)

= Acos(2rfit+80). i=12
A cos @ cos 27 fit — Asin@sin 2 f;t
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The signal consists of an in phase component A cos 8 cos 27r ft and a quadrature component A sin
8 sin 2x f,t sin 0. Thus the signal is partially correlated with cos 2s fit and partiah'y correlated with
sin 27r fit. Therefore we use two correlators to collect the signal energy in these two parts. The
outputs of the in phase and quadrature correlators will be cos 19 and sin 8, respectively. Depending
on the value of the unknown phase 8, these two outputs could be anything in (- 5, y). Fortunately
the squared sum of these two signals is not dependent on the unknown phase. That is
( %7: cos 8)? + (%Z sin#)? = 4-227;2

This quantity is actually the mean value of the statistics 1? when signal si (t) is transmitted and noise
is taken into consideration. When si (t) is not transmitted the mean value of 1: is 0. The comparator
decides which signal is sent by checking these 1?. The matched filter equivalence to Figure 3.9 is
shown in Figure 3.10 which has the same error performance. For implementation simplicity we can
replace the matched filters by bandpass filters centered at f and fi, respectively (Figure 3.1 1).

However, if the bandpass filters are not matched to the FSK signals, degradation to

Sample at
t—kT
Bandpass Envelope \ h
B filter at f) Detector v ;
flhy>10
r(t) choose |
Sample at Comparator [—» I > 1,
t= kT choose 0
Bandpass Envelope \ J
filter at o Detector l;

various extents will result. The bit error probability can be derived using the correlator demodulator
(Appendix B). Here we further assume that the FSK signals are orthogonal, then from Appendix B

the error probability is

P, = —e~Ev/2N
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PART-2

DATATRANSMISSION
BASE BAND SIGNAL RECEIVER:

Consider that a binary encoded signal consists of a time sequence of voltage levels +V or -V.
if there is a guard interval between the bits, the signal forms a sequence of positive and
negative pulses. in either case there is no particular interest in preserving the waveform of the
signal after reception .we are interested only in knowing within each bit interval whether the
transmitted voltage was +V or —V. With noise present, the receives signal and noise together
will yield sample values generally different from £V. In this case, what deduction shall we
make from the sample value concerning the transmitted bit?

Supposc that the noise is gaussian and therefore the noise voltage has a
probability density which is entirely symmetrical with respect to zero volts. Then
the probability that the noise has increased the sample value is the same as the
probability that the noise has decreased the sample value. It then seems entirely
rcasonable that we can do no better than to assume that if the sample value is
positive the transmitted level was + V. and if the sample value is negative the
transmitted level was — V. It is, of course, possible that at the sampling time the
noisc voltage may be of magnitude larger than ¥V and of a polarity opposite Lo
the polarity assigned to the transmitted bit. In this casc an error will be made as
indicated in Fig. 11.1-1. Here the transmitted bit is represented by the voliage
+ ¥V which is sustained over an interval 7 from r, to r,. Noise has been superim-
posed on the level + V so that the voltage r represents the reccived signal and
noise. If now the sampling should happen to take place at a time 7 = 1, 4+ Ar, an
error will have been made.

We can reduce the probability of error by processing the received signal plus
noise in such a manner that we are then able to find a samplec time where the
sample voltage due to the signal is emphasized relative to the sample voltage due
to the noise. Such a processer (receiver) is shown in Fig. 11.1-2. The signal input
during a bit interval is indicated. As a matter of convenience we have set t = 0 at
the beginning of the interval. The waveform of the signal s(f) before ¢t = 0 and
after + = T has not been indicated since, as will appear, the operation of the
receiver during each bit interval is independent of the wavcform during past
and future bit intervals.

The signal s(r) with added white gaussian noisc n(r) of power spectral density
n/2 is presented to an integrator. At time 7 = 0 4+ we require that capacitor C be
uncharged. Such a discharged condition may be ensured by a brief closing of
switch SW, at time r = 0 — | thus relieving C of any charge it may have acquired
during the previous interval. The sample is taken at the output of the integrator
by closing this sampling switch SW., . This sample is taken at the end of the bit
interval, at ¢t = 7. The signal processing indicated in Fig. 11.1-2 is described by
the phrase inregrate and dump, the term dump referring to the abrupt discharge of
the capacitor after each sampling.
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Figure 11.1-2 A receiver for a binary coded signal.

Peak Signal to RMS Noise Output Voltage Ratio

The integrator yields an output which is the integral of its input multiplied by
I/RC. Using t = RC, we have

R B 1 (7 1 rr
:.-,,(T)=—J- [s(r) + n(e)] d =--[‘s{r) dr+-Lmnd: (11.1-1)
T o T T
The sample voltage due to the signal is
T VT
sJT):%L th=»_r— (11.1-2)

The sample voltage due to the noisc is
T
"°(T)=1I nie) de (11.1-3)
T Jo

This noise-sampling voltage »n,(7) is a gaussian random variable in contrast with
n(r). which is a gaussian random process.
The variance of n(7T) was found in Scc. 7.9 [see Eq. (7.9-17)] to be

nT

o2 = nZ(T) = >23

(11.1-4)

and, as noted in Sec. 7.3, n(7) has a gaussian probability density.

The output of the integrator, before the sampling switch, is v (7) = s.(r)
+ n (7). As shown in Fig. 11.1-3a, the signal output s,(r) is a ramp, in each bit
interval, of duration 7. At the end of the interval the ramp attains the voltage
sAT) which is + VT /tr or — VT /1, depending on whether the bitisa | or a 0. At
the end of cach interval the switch SW, in Fig. 11.1-2 closes momentarily to dis-
charge the capacitor so that s, (r) drops to zero. The noise n(r). shown in
Fig 11.1-3b, also starts each interval with n(0) = 0 and has the random value
n(7) at the end of each interval. The sampling switch SW, closes briefly just
before the closing of SW, and hence reads the voltage

vAT)=5AT) + n(T) (11.1-5)
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Figure 11.1-3 (a) The signal output and () the noise cutput of the integrator of Fig. 11.1-2.

We would naturally like the output signal voltage to be as large as possible
in comparison with the noise voltage. Hence a figure of merit of interest is the
signal-to-noise ratio

%:% Vi (11.1-6)
"ﬂ

This result is calculated from Eqs. (11.1-2) and (1 1.1-4). Note that the signal-to-
noise ratio increases with increasing bit duration 7" and that it depends on V2T
which is the normalized energy of the bit signal. Therefore. a bit represented by a
narrow, high amplitude signal and one by a wide, low amplitude signal are
equally effective, provided V7?7 is kept constant.

It is instructive to note that the integrator filters the signal and the noise such
that the signal voltage increases linearly with time, while the standard deviation
{rms value) of the noise increases more slowly, as ﬁ Thus, the integrator
enhances the signal relative to the noise, and this enhancement increases with
time as shown in Eq. (11.1-6).

PROBABILITY OF ERROR

Since the function of a receiver of a data transmission is to ditinguish the bit 1 from the _bit 0
in the presence of noise, a most important charcteristic is the probability that an error will be
made in such a determination.we now calculate this error probabilty Pe for the integrate and

dump receiver of fig 11.1-2
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We have scen that the probability density of the noise sample », (7T} is gauss-
ian and hence appears as in Fig. 11.2-1. The density is therefore given by

e M TV 2,2

—— (11.2-1)
W 2nol

FingT)y) =<

where a7, the variance, is a2 = n2(7T) given by Eq. {11.1-4). Suppose, then, that
during some bit interval the input-signal voltage is held at, say, — V. Then, at the
sample time, the signal sample voltage is s (7) = — V' 7 /7, while the noise sample
is n {T). If n{7T) is positive and larger in magnitude than V7 /r, the total sample
voltage v (T) = s5,(T) = n(7T) will be positive. Such a positive sample voltage will
result in an error, since as noted earlier, we have instructed the receiver to inter-
pret such a positive sample voltage to mean that the signal voltage was -+ V
during the bit interval. The probability of such a misinterpretation, that is, the
probability that n (7)) = VT /z, 1s given by the arca of the shaded region in
Fig. 11.2-1. The probability of error is, using Eq. (11.2-1).

o = e mo (TN 2ma2
P, = S (T)] dn (T) = ——dn (T (11.2-2)
JV S L ] Ve V 21:03

Defining x = »n( T).lﬁa,. and using Eq. (11.1-4), Eq. (11.2-2) may be rewritten as

o

) e
2. S dcorim

7 2 12 142
—lerfc(l/ \/I)=lcrfc(v T) W (’E—’) (11.2-3)
2 ” 2 ] 2 n

in which E, = V*T is the signal energy of a bit.

IT the signal voltage were held instead at + V during some bit interval, then it
is clear from the symmetry of the situation that the probability of error wonld
again be given by P_in Eq. (11.2-3). Hence Eq. (11.2-3) gives P_quite generallv.

P_ e ** dx

fln,tT]

vr n, (T
T

Figure 11.2-1 The gaussian probabhility density of the noise sample n (7).
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B a8 Figure 11.2-2 Variation of P_ versus Eln.
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The probability of error pe, as given in eq.(11.2-3),is plotted in fig.11.2-2.note that pe decreases
rapidly as Es/n increases. The maximum value of pe IS %2.thus ,even if the signal is entirely lost in
the noise so that any determination of the receiver is a sheer guess, the receiver cannot bi wrong
more than half the time on the average.

THE OPTIMUM FILTER:

In the receiver system of Fig 11.1-2, the signal was passed through a filter(integrator),so that at the
sampling time the signal voltage might be emphasized in comparison with the noise voltage. We are
naturally led to risk whether the integrator is the optimum filter for the purpose of minimizing the
probability of error. We shall find that the received signal contemplated in system of fig 11.1-2 the
integrator is indeed the optimum filter. However, before returning specifically to the integrator
receiver.

We assume that the received signal is a binary waveform. One binary digit is represented by
a signal waveformsS; (t) which persists for time T, while the4 other bit is represented by the
waveform Sx(t) which also lasts for an interval T. For example, in the transmission at baseband, as
shown in fig 11.1-2 Sy(t)=+V; for other modulation systems, different waveforms are transmitted.
for example for PSK signaling , S1(t)=Acoswot and Sa(t)=-Acoswot;while for FSK,
S1(t)=Acos(wo+ayt.

As shown in Fig. 11.3-1 the input, which is =,{r] or =;(r), is corrupted by the
addition of noise mf). The noise is gaussian and has a spectral density 7 )L [In
most cases of interest the noise is white, so that & f) = /2. However, we shall
assume the more general possibility, since it introdouces no complication to do
50.] The signal and noise are filtered and then sampled at the end of each hit
interval. The output sample is either o (T) = 5 (T) + n AT or v AT} = 5..(T)
+ n AT) We assume that immediately after cach sample, every energy-storing
element in the filter has been discharged.

We hawve already considered inm Sec. 2.22, the matter of signal determination
in the presence of noise. Thus, we note that in the abscnce of noise the outrpur
sample would be o (T = 5,07 or 5, TL When noise is presenl we have shown
that to minimize the probability of error one should assume that s,(r) has bheen
transmitted il v (T is closer o 5,,(T) than to 50Tk Similarly, we assume s.(r)
has been transmitted if v (T is closer to s5,,(TrL The decision boundary is there-
fore midway betwern 5, (T) and £, T) For example, in the baseband system of
Fig. 10.1-2, where 5 (T} = FT)/r and 5 (7)) = — VT /1, the decision boundary is
v T = 0. In general, we shall take the decision boundary 1o be

1.
> (11.3-1)

0(T) =

The probability of error for this general case may be deduced as an extension
of the considerations used in the baseband case. Supposc that s,,(T) = s_,(7) and
that s,(r) was transmitted. If, at the sampling time, the noise n {7) is positive and
larger in magnitude than the voltage difference 4[5, (7T) + 5..(7)] — s5..(7T). an
error will have been made. That is, an error [we decide that s,(r) is transmitred
rather than s,(r)] will result if

5,4(T) = 5,5(T)

3-
5 (11.3-2)

n(T) =
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Hence probability of error is

@ e =T 2y
P, = I — dn(T) (11.3-3)

U —22(THI2 o /21m

Gaussian noise, n(1)
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- Baal TI 48, (T)
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Figare 11.3-1 A receiver for binary coded signalling.
If we make the substitution x = n (T)//20,, Eq. (11.3-3) becomes

P,:%i e * dx (11.3-4a)
\/’; 51T — T2/ 2o,

Prsi e,f [ “‘T’ ’92(” (11.3-ab)
Note that for the case 5,,(7T) = VT /r and s_,(7T) = — ¥V T/r, and. using Eq. (11.1-

4), Eq. (11.3-4b) reduces to Eq. (11.2-3) as expected.

The complementary error function is a monotonically decreasing function of
its argument. (See Fig. 11.2-2)) Hence, as is to be anticipated, P_ decreases as the
difference s,,(T) — s5,,(7T) becomes larger and as the rms noise voltage o, becomes
smaller. The optimum filter, then, is the filter which maximizes the ratio

SeilT) — 5,2(T) (11.3-5)

T

We now calculate the transfer function H( /) of this optimum filter. As a matter of
mathematical convenience we shall actually maximize 2 rather than ».

Calculation of the Optimum-Filter Transfer Function H( )

The fundamental requirement we make of a binary encoded data receciver is that
it distinguishes the voltages s,(¢t) + n(r) and s5,{r) + »n(r). We have seen that the
ability of the receiver to do so depends on how large a particular receiver can
make p. It is important to note that y is proportional not to s,(f) nor to s,(r), but
rather to the difference between them. For example, in the baseband system we
represented the signals by voltage levels + V and — V. But clearly, if our only
interest was in distinguishing levels, we would do just as well to use + 2 volts and
O volt, or + 8 volts and + 6 volts, etc. (The + V and — V levels, however, have
the advantage of requiring the least average power to be transmitted.) Hence,
while s,{r}) or s.(?) is the received signal, the signal which is to be compared with
the noise, i.e., the signal which is relevant in all our error-probability calculations,
is the difference signal

p(r) = s,(t) — s,(1) (11.3-6)

Thus, for the purpose of calculating the minimum error probability, we shall
assume that the input signal to the optimum filter is p{t). The corresponding
output signal of the filter is then

Polt) = 5,,(8) — 5,2(1) (11.3-7)
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We shall let P(f) and P, f) be the Fourier transforms, respectively, of p{r} and
Palt).
If H( ) is the transfer function of the filter,

Pf)= H(YP([) (11.3-8)
and po(T) = J‘m pn(f)en-fr df= J‘m H(f}P(f)("z'!r df (11.3-9)

- an

The input noise to the optimum filter is n(r). The output noise is n(r) which
has a power spectral density G, (f) and is rclated to the power spectral density of
the input noisc G, (/) by

G () =1HUNIPGLN) (11.3-10)

Using Parseval's theorem (Eq. 1.13-5), we find that the normalized output noise
power, i.€., the noise variance a2, is

o = .[ G (f) df = I | HUO PGS ) df (11.3-11)
From Eqs. (11.3-9) and (11.3-11) we now find that
L2 PAT) _ T HUOP( )T df? (11.3-12)
a? I HN PG AS) df -

Equation (11.3-12) is unaltered by the inclusion or deletion of the absolute value
sign in the numerator since the quantity within the magnitude sign p(T) is a
positive real number. The sign has been included, however, in order to allow
further development of the equation through the use of the Schwarz inequality.

The Schwarz inequality states that given arbitrary complex functions X(f)
and Y(f) of a common variable £, then

2 o -
SJ‘ lX(.f)l’dfj LY(N ) df (11.3-13)

bl

r X(OY(S) df

The equal sign applies when
X(f)= KY*[f) (11.3-14)
where K is an arbitrary constant and Y*( () is the complex conjugate of Y( /).

We now apply the Schwarz inequality to Eq. (11.3-12) by making the identifi-
cation

X(N=J/GAN H(S) (11.3-15)
and Y(f)= —\/——GL(——B P([f)e*3*TS (11.3-16)

Using Eqgs. (11.3-15) and (11.3-16) and using the Schwarz inequality, Eq.(11.3-13),
we may rewrite Eq. (11.3-12) as

2 = Y(f) df)? _
HD L XOMOE [ e s
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or. using Eq. (1 |.3-l6).

2
sf | Y(NI1* df = I '2{}; ar (11.3-18)

The ratio p,(T)"o' will attain its maximum value when the equal sign in
Eq. (11.2-18) may be employed as is the case when X(f) = KY*(f). We then find
from Eqgs. (11.3-15) and (11.3-16) that the optimum filter which yields such a
maximum ratio p2(7T)/a? has a transfer function

P‘(f) e~ iAmST

s 3-19
me G.A. f) (11 )
Correspondingly, the maximum ratio is, from Eq. (11.3-18),
ps(T) _ [~ Pt
[ o? ]..... 3 f. . Gun Y (11.3-20)

In succeeding scctions we shall have occasion to apply Egs. (11.13-19) and
(11.13-20) to a number of cases of interest.

I1.4 WHITE NOISE: THE MATCHED FILTER

An optimum filter which yiclds a maximum ratio p2(T) a2 is called a matched
filter when the input noise is white. In this case G (f) = n/2, and Eq. (11.3-19)
hecomes

P - nerr
n/2

The impulsive response of this filter, 1.e, the responsc of the filter to a unit
strength impulse applied at ¢t = 0, 1s

H(f)= K (11.4-1)

h(t) = & ~'[H(f)] — 27? J' T Py F2sTeianrr gf (11.4-2a)

-
2K I P*(f)el2=re=1 gf (11.4-26)

-
A physically realizable filter will have an impulse response which is real, i.e., not
complex. Therefore hir) = h*(r). Replacing the right-hand mcmber of Eq. (11.4-25k)

by its complex conjugate, an operation which lcaves the equation unaltered, we
have

h(:)='2';? J‘ " PR gf e

B % §T — 1) (11.4-3b)
Finally, since p(r) = s,(r) — 5,(t) [sce Eq. (11.3-6)], we have

hit) g;:f- [SAT —t) — s(T —1)] (11.4-4)
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The significance of these results for the matched filter may be more readily
appreciated by applving them to a specific example. Consider then, as in
Fig. 11.4-1a, that s5,{r) is a triangular waveform of duration 7, while s,{7), as
shown in Fig 11.4-15, is of identical form except of reversed polarity. Then p(r) is
as shown in Fig. 11.4-Ic, and p{ — 1) appears in Fig. 11.4-1d. The waveform p{ —r)
is the waveform p{7) rotated around the axis t = 0. Finally, the waveform p{ T — 1)
called for as the impulse response of the filter in Eq. (11.4-35) is this rotated
waveform p{—r) translated in the positive ¢ direction by amount 7. This last
translation ensures that A7) = O for t < O as is required for a causal filter.

In general, the impulsive response of the matched filter consists of p(t) rotated about t=0 and
then delayed long enough(i.e., a time T) to make the filter realizable. We may note in passing, that
any additional delay that a filter might introduce would in no way interfere with the performance of
the filter ,for both signal and noise would be delayed by the same amount, and at the sampling time
(which would need similarity to be delayed)the ratio of signal to noise would remain unaltered.

(1)
G pemm—-
(a)
T t
1
N r
t
(L))
- e~
PUL) = s (t)=uy(0)
[T -
(e)
T t
pl~t)
""" '{ 2a
(d)
= = :
p(T-1)
2a -

(e) Figure 11.4-1 The signals (a) 5,(r), (B) 5,(1), and
(€) plr) = 5,(1) — 5,(t). (d) plr) rorated about the
axis t = (. (¢) The waveform in (d) translated 10
the right by amount T

1.5 PROBABILITY OF ERROR OF THE MATCHED FILTER

The probability of error which results when employing a matched filter, may be
found by evaluating the maximum signal-to-noise ratio [pX(TVa2]... given by
Fq. (11.3-20). With G () = n/2. Eq. (11.3-20) becomes

AT 2 =
[Mz)] =’—’_{ | PO df (11.5-1)

a,
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From parseval's theorem we have

- £ T
'[ [P df = I pi(n) dt = f pi(1) dt {11.5-2)
o« - (U

In the last integral in Eq. (11.5-2), the limits take account of the fact that p(r) per-
sists for only a time 7. With p(r) = s,(t) — s,(r). and using Egqg. (11.5-2), we may
write Eq. (11.5-1) as

g 2 (7
l:p;;l'):l =5 L [s4(1) — s5(0)]* de (11.5-3a)
2 T T T
= ; [J; si(e) de + L s3n de =2 J s;(0sy(0) de - (11.5-3b)
o
2
= ;' ‘E!I 1 Ell - 25.:2) (1 '5-3()

Here E,, and E,; are the energies, respectively, in s,(r) and s,(z), while E_,, is the

cnergy due to the correlation between s,(r) and s,(1).
Supposc that we have selected s5,(r), and let s,(z) have an energy E_, . Then it
can be shown that if s,(¢) is to have the same energy, the optimum choice of s,(t)

1s

5y(t) = —s,(1) (11.5-4)
The choice is optimum in that it yields a maximum output signal p3(7) for a
given signal energy. Letting s,(r) = — s,(r), we find

Ey=Ey=—E,=E,

and Eq. (11.5-3¢) becomes
T 8E
[ﬁ‘_)] - 2B (11.5-5)

2
%, n

Rewriting Eq. (11.3-4b) using p(T) = s,,(T) — 5,,(T), we have

sl -pUT) |2 pATY]"?
P,= 2crfc [2\/5 a,,] =3 crfc[ 807 ] (11.5-6)

Combining Eq. (11.5-6) with (11.5-5), we find that the minimum error probability
(P )i corresponding to a maximum value of pX(T)/al is

I I[pd(T) VA
. =" ~ o (o 7
(P rmin Zcrfc { “[ e ]."} (11.5-7)
172
- % erfc (%) (11.5-8)

We note that Eq. (11.5-8) establishes more generaliy the idea that the error
probability depends only on the signal energy and not on thec signal waveshape.
Previously we had established this point only for signals which had constant

voltage levels.
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We note also that Eq. (11.5-8) gives (FP_),,,,, for the case of the matched filter
and when s,(r) = —s.{t). In Scc. 11.2 we considered the casec when s5,(t) = + V
and s.(r) = — V and the flter emploved was an inlcgralor_'. Th.erc we found
[Eq- (11.2-3)] that the result for P_ was identical with {P_),.;. given in Eq. (11.5-8).
This agreement leads us to suspect that for an input signal where s,(r) = + V and

£,(1) = — V' the integrator i1s the matched filter. Such is indced the case, For when
we have

si(=V 0<t<T (11.5-9a)

50 =—-V 0<stsT (11.5-9h)

the impulse response of the matched filter is, from Eq. (11.4-4),

hir) = ZTK ST — 1) — 5T —1)] (11.5-10)

The quantity s, (T — 1) — 5,(T — r) is a pulse of amplitude 2V extending from
t = 0Otor =T and may be rewritten, with z(r) the unit step.

mn-=27"¢zn[«m>—u(x—r)] (1L5-11)

The constant factor of proportionality 4K V /5y in the expression for h(r) (that is,
the gain of the filter) has no effect on the probability of error since _lhc gain affects
signal and noise alike. We may thercfore sclect the cocefficient K in Eq. (11.5-11)
so that 4K V/n = 1. Then the inverse transform of k(r). that is, the transfer func-
tion of the filter, becomes, with s the Laplace transform variable,

—aT

{11.5-12)

1 e
Hiz) =— —
]

The first term in Eq. (11.5-12) represents an intcgration beginning at ¢ = 0,
while the second term represents an integration with reversed polarity beginning
at ¢+ = T. The overall response of the matched filter is an integration from 7 = 0
te r= T and a zero response thereafter. In a physical system, as already
described. we achieve the effect of a zcro response after ¢ = T by sampling at
t = T. so that so far as the dctermination of one bit is concerned we ignore the
responsc after r = 7T,

COHERENT RECEPTION: CORRELATION:

We discuss now an alternative type of receiving system which, as we shall see, is
identical in performance with the matched filter receiver. Again, as shown in
Fig. 11.6-1, the input is a binary data waveform 34(7) or s;(r) corrupted by noise
n(r). The bit length is 7. The received signal plus noise vAe) is multiplied by a
locally generated waveform s,(r) — 5,(7). The output of the multiplier is passed
through an integrator whose output is sampled at ¢ — 7. As before, immediately
after each sampling, at the beginning of each new bit interval, all energy-storing
clements in the integrator are discharged. This type of rcceiver is called a correla-
7or, since we are correlating the received signal and noise with the waveform s,.(1)
— s(r)
The output signal and noise of the correlator shown in Fig. 11.6-1 are

T
SAT) = > SAt)s (0) — s45(1)] dt
o (11.6-1)
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T
n(T) = % J; n(t)s,(1) — s,(e)] dt
(11.6-2)

Where sy(t) is either si(t) or so(t),and wthere 7 is the constant of the integrator(i.e.,the integrator
output is 1/ times the integral of its input).we now compare these outputs with the matched filter

outputs.

Local signal
s (1)~ 110)
Input il
s {+n(t) () /\ s (TH olT
v (f) = { , —aed Integrator = il -ulT)
-,(lHn(l) ol AKS.:N*T A.:(THn.lT)
[ 7% — S—
Correlator

Fig:11.6-1 Coherent system of signal reception

I h(t) is the impulsive response of the matched filter ,then the output of the matched filter vo(t) can
be found using the convolution integral. we have

o0 T
() = J vt — A) di = J' vl A)h(t — 2) di
b (11.6-3)

The limits on the integral have been charged to 0 and T since we are interested in the filter response
to a bit which extends only over that interval. Using Eq.(11.4-4) which gives h(t) for the matched

filter, we have
2K
h(t) = T [S,(T - 1) — SZ(T — f)]

(11.6-4)
h A i) 2K (T A) (T A)
so that e L) = — [& -4 )= —t44
A= L * ] (11.6-5)
sub 11.6-5in 11.6-3
S REPT
v(r) = % | PAANS AT —t 4+ A — sAT —t + 2)] dA (11.6-6)
JO
Since v{A) = 5{2) + n(2), and v,(t) = s,(t) + n,(1), setting t = T yields
2K (T
5AT) = % sAA)s (A) — 52(2)] d2
" (11.6-7)
where s{2) is equal to s5,(4) or 5,(4). Similarly we find that
7} G )
n(T) = —"- n(A)[s,(4) — s,(4)] di
JO
(11.6-8)

Thus so(T) and no(T), as calculated from eqgs.(11.6-1) and (11.6-2) for the correlation receiver, and
as calculated from egs.(11.6-7) and (11.6-8) for the matched filter receiver, are identical .hence the
performances of the two systems are identical. The matched filter and the correlator are not simply
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two distinct, independent techniques which happens to yield the same result. In fact they are two
techniques of synthesizing the optimum filter h(t)
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5.13&&?0{ Probability of ASK
Amplitude Shift Keying (ASK), some number of carrier cycles are transmitted to
send ‘1" and no signal is transmitted for binary '0". Thus,

Binary 'I' = x,(f) = 2P, cos(2nfyf) and

Binary '0' = x;(f) = 0 (ie. no signal) w (5.13.1)

2
Here F; is the normalized power of the signal in 1Q load. ie. power P, =-42-.

Hence A=\/2P,. Therefore in above equation for x; (t) amplitude ‘A’ is replaced by
o
v2k;.
We know that the probability of error of the optimum filter is given as,
P, = % erfe { Xg1 (T) - xq (T) } - (5.132)

2\'50

Here

Swi (f)

The above equations can be applied to matched filter when we consider white
Gaussian noise. The power spectral density of white Gaussian noise is given as,

Ny
2

[rm U‘);xm m]’ . [ XOE

—

Sul (f) -

Putting this value of S, (f) in above equations we get,

[ M-xe M) FIXOR
e PO b
2
- 2
= ml;x(f); df . (5.13.3)

Parseval's power theorem states that,
JIX(DPdf = [x2(@mar

Hence equation 5.13.3 becomes,
X0 (D) - 22 O]

a

-2 7.2
—N;Ix(t)dt

max
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We know that x(f) is present from 0 to T. Hence limits in above equation can be
changed as follows :

[Im (T)-xg2 DT

xZ () dt . (5.134)
o

1
No

O’—c"i

max

We know that x(¢) = x; (f) — x5 (f). For ASK x; (f) is zero, hence x(f) = x; (f). Hence
above equation becomes,

2 T
[ X0 (T);xca (T)] - Tz‘jxf (f) dt
X '

Putting equation of x (f) from equation 5.13.1 in above equation we get,

- 2 i 4

{xp (1) =xg2 (T)] . 2 e :

}. = Jm‘ ko j [\ZP‘ cos(Zn,f(.r)] dt
0

7
- i& I COS2 (23{0 £) dt
.\0 0 )

T

————. Here applying this formula to cos?® (2xfp?) we get,

—

We know that cos?2 8=

oS
2

[.rm (T) - xp2 M7’ 4P, } 1+ «»-mfor
0

| 1Y | -
(8] | S— N Q

T T
= 4{-)’— %ﬂlj' j os-hgfgtdtl
M ".0 Q ]
[iin‘ﬂfjf]1.
- —“‘[ Jo + [T;OL
' 2P, .. sindnfyT i
= { T+ S (5.135)

We know that T is the bit period and in this one bit period, the carrier has integer
number of cycles. Thus the product f; T is an integer. This is illustrated in Fig. 5.13.1
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1/

8 Fig. 5.13.1 In one bit period T, the
carrier completes Its two cycles, The

carrier has frequency f,. From figure we can

[’
>" -.

|
! ’
VARV L
E fo Jo
i i - . 7 2
= - Ttk
panod o fo = 2 (integer no. of cycles)

As shown in above figure, the carrier completes two cycles in one bit duration.
Hence

HT =2
Therefore, in general if carrier completes k' number of cycles, then,

foT = k (Here k is an integer)
Therefore the sine term in equation 5.13.5 becomes, sindnk and k is integer.
For all integer values of k, sin 4=k « 0. Hence equation 5.13.5 becomes,

[ xg1 (T) = x¢0 (N ]? 2P, T
= .. (5.13.6
= L= b (5.13.6)
Xy (T) = xgp (T)] . (3BT 5.13
[ o - m._‘ \‘ ND - ( ) .7)

Putting this value in equation 5.132 we get error probability of ASK using
matched filter detection as,

1 .11 RETI 1 BT
P = Oty fls } =iy orfe..[la
S T 1\2\.2 V No j 2 f‘\-mo

Here P, T =E i.e. energy of one bit hence above equation becomes,

Error probability of ASK : P, = 2 erfe \'U\L'o - (5.13.8)

This is the expression for error probability of ASK using matched filter detection.
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Error Probability of Binary FSK

The observation vector x has two elements x; and x, that are defined by, respectively,

.

X = L x(t)p,(t) dt (6.92)
T}

x = | x()ga(0) d (6.9

where x(t) is the reccived signal, the form of which depends on which symbol was trans
mitted. Given that symbol 1 was transmitted, x(t) equals s,(¢) + w(t), where w(t) 18 the
sample function of a white Gaussian noise process of zero mean and power spectral density
No/2. If, on the other hand, symbal 0 was transmitted, x(£) equa_ls sa(t) + _tv[ﬂ: Il
Now, applying the decision rule of Equation (5.59), we find that the obsel'fﬂ%if;
space is partitioned into two decision regions, labeled Z, and Z, in Figure 62.2:-. .
decision boundary, separating region Z, from region Z; is the perpendicular bisector

the line joining the two message points. The receiver decides in favor of symbol 1 if the
received signal point represented by the observation vector x falls inside region Z,. This
occurs when x; > x,. If, on the other hand, we have x; < x,, the received signal point
falls inside region Z,, and the receiver decides in favor of symbol 0. On the decision
boundary, we have x; = x,, in which case the receiver makes a random guess in favor of
symbol 1 or 0.

Define a new Gaussian random variable Y whose sample value y is equal to the
difference between x,; and x,; that is, '

y =% =X (6.94)

The mean value of the random variable Y depends on which binary symbol was trans-
mitted. Given that symbol 1 was transmitted, the Gaussian random variables X, and X,
whose sample values are denoted by x, and x,, have mean values equal to VE,, and zero,

respectively. Correspondingly, the conditional mean of the random variable Y, given that
symbol 1 was transmitted, is

E[Y|1] = E[X,|1] - E[X,!1]
- SN (6.95)

On the other hand, given that symbol 0 was transmitted, the random variables X, and X,
have mean values equal to zero and VE,, respectively. Correspondingly, the conditional
mean of the random variable Y, given that symbol 0 was transmitted, is
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E[Y|0] = E[X,|0] — E[X.|0]
6.96
- —VE, L
The variance of the random variable Y is independent of which binary symbol was trans-

mitted. Since the random variables X, and X, are statistically independent, each with a
variance equal to Ny/2, it follows that

var[Y] = var[X;] + var[X,]

Suppose we know that symbol 0 was transmitted. The conditional probability density
function of the random variable Y is then given by

fr(y]|0) = 1 e [_—()’ T \/E;)Z]
M V2N, P 2N,

(6.97)

(6.98)

Since the condition x, > x;, or equivalently, y > 0, corresponds to the receiver making a
decision in favor of symbol 1, we deduce that the conditional probability of error, given
that symbol 0 was transmitted, is

P10 = P(y > 0|symbol 0 was sent)

= [ fuiylo) dy (6.99)

& fwex [—(y+\/§b)2:|d
\/Z’FN() 0 4 2-NO g

W =2 (6.100)

Then, changing the variable of integration from y to z, we may rewrite Equation (6.99)
as follows:

il —2) d
Pro = V}.L/‘E,,/‘ZNO RXpl-£0) 0

o (6.101)
L erfc( f—b )
2 V2N,

Similarly, we may show the poy, the conditional probability of error given that SY{nbOI 1
was transmitted, has the same value as in Equation (6.101). A_ccordmgly, averaging p,
and po;, we find that the average probability of bit error or, equivalently, the bit error rg,
for coberent binary FSK is (assuming equiprobable symbols)
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Lol [Bo
P=5 erfc(\iju) (6.102)

Comparing Equations (6.20) and (6.102), we sec that, in a coherent binary FSg
system, we have to double the bit energy-to-noise density ratio, E,/Ng, to maintain the
same bit error rate as in a coherent binary PSK system. This result is in perfect accord with
the signal-space diagrams of Figures 6.3 and 6.25, where we see that in a binary PSK
system the Euclidean distance between the two message points is equal to 2VE;, whereas
in a binary FSK system the corresponding distance is \/2E,. For 2 prescribed E,, the
minimum distance d,.;, in binary PSK is therefore \/2 times that in binary FSK. Recall
from Chapter 5 that the probability of error decreases exponentially as d7,,, hence the
difference between the formulas of Equations (6.20) and (6.102).

Error Probability of QPSK
In a coherent QPSK system, the received signal x(t) is defined by
0=¢t=T

x(t) = s;(t) + wit), {‘_ w5 B (6.28)

where w(t) is the sample function of a white Gaussian noise process of zero mean and
power spectral density No/2. Correspondingly, the observation vector x has two elements,
x, and x,, defined by

T
Xy = L x(t)d)-l(t) dt

<N/ E cos[(Zi ~ 1) "ﬂ + w (6.29)
= x /"F:' + w4
V2
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rT

x; = Jo x(t)cpo(t) dt
= -VE sin[(Zi - 1) %r] + w; (6.30)

[E

=-T-v?+w2

Thus the observable elements x; and x, are sample values of independent Gaussian random
variables with mean values equal to +V/E/2 and ¥VE/2, respectively, and with a common
variance equal to Ny/2.

The decision rule is now simply to decide that s;(¢) was transmitted if the received
signal point associated with the observation vector x falls inside region Z,, decide that
s2(t) was transmitted if the received signal point falls inside region Z,, and so on. An
erroneous decision will be made if, for example, signal s4(2) is transmitted but the noise
w(t) is such that the received signal point falls outside region Z,.

To calculate the average probability of symbol error, we note from Equation (6.24]
that a coherent QPSK system is in fact equivalent to two coherent binary PSK systems
working in parallel and using two carriers that are in phase quadrature; this is merely a
statement of the quadrature-carrier multiplexing property of coherent QPSK. The in-phase
channel output x; and the quadrature channel output x, (ie., the two elements of the
observation vector X) may be viewed as the individual outputs of the two coherent binary
PSK systems. Thus, according to Equations (6.29) and (6.30), these two binary PSK sys-
tems may be characterized as follows:

» The signal energy per bit is E/2.
» The noise spectral density is Ny/2.

Hence, using Equation (6.20) for the average probability of bit error of a coherent binary
PSK system, we may now state that the average probability of bit error in eack channel of
the coherent QPSK system is

Lo B2
P = erfc(\/ No)
: fE- (6.31)

=35 erfc(\!'ZNo)

[ ¥
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Another important point to note is that the bit errors in the in-phase and quadrature
channels of the coherent QPSK system are statistically independent. The in-phase channel
makes a decision on one of the two bits constituting a symbol (dibit) of the QPSK signal,
and the quadrature channel takes care of the other bit. Accordingly, the average probability
of a correct decision resulting from the combined action of the two channels working
together is

P.=(1-P)
=\ 2
1 E
- [1 - Eerfc( Z_No)] (6.32)

- ) Lo D

The average probability of symbol error for coherent QPSK is therefore

P,=1-P

BN 1 E (6.33)
= crfc(v,}z—No) -2 erfcz(\/;\To)

In the region where (E/2Ny) => 1, we may ignore the quadratic term on the right.},and
side of Equation (6.33), so we approximate the formula for the average probability of
symbol error for coherent QPSK as

[E
P, = erfc(¢2—NO) (6.34)

The formula of Equation (6.34) may also be derived in another insight'ful way, using
the signal-space diagram of Figure 6.6. Since the four message poir?ts of this diagram ape
circularly symmetric with respect to the origin, we may apply Equation (5.92), reproduced
here in the form

, dw) ,
< - f for all 6.3
P, = > Zl er c(2 N or all (6.35)
fegi

Consider, for example, message point 7, (corresponding to dibit 10) cho§ep as the trans-
mitted message point. The message points 7, and 71, (corresponding to dibits 00 and 11)
are the closest to n1,. From Figure 6.6 we readily find that 7, is equidistant from m, and
m, in a Euclidean sense, as shown by

d12 - d14 = \/ﬁ
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Assuming that E/Nj is large enough to ignore the contribution ot the most distant message
point #15 (corresponding to dibit 01) relative to 1., we find that the use of Equation (6.35)
vields an approximate expression for P, that is the same as Equation (6.34). Note that in
mistaking either 1, or 7, for my, a single bit error is made; on the other hand, in mistaking
m for my, two bit errors are made. For a high enough E/N, the likelihood of both bits
of a symbol being in error is much less than a single bit, which is a further justification
for ignoring m; in calculating P, when 1, is sent. HHEHL 1

In a QPSK system, we note that since there are two bits per symbol, the transmutted

signal energy per symbol is twice the signal energy per bit, as shown by

Thus expressing the average probability of symbol error in terms of the ratio E,/Ng, we

may write
[E,
Y b 6.37)
P, erfc( V, N, (

With Gray encoding used for the incoming symbols, we find from Equations (6.31]
and (6.36) that the bit error rate of QPSK is exactly

. /_. 38)
=5 1 E, (6.
BER erfc( ’o)

We may therefore state that a coherent QPSK system achieves the same average probabiy
of bit error as a coherent binary PSK system for the same bit rate and the same Es/ I“g’
but uses only half the channel bandwidth. Stated in a different way, for the same Ex/No
and therefore the same average probability of bit error, a coherent QPSK system transmits
information at twice the bit rate of a coherent binary PSK system for the same channé

bandwidth. For a prescribed performance, QPSK uses channel bandwidth better than bi-
nary PSK, which explains the preferred use of QPSK over binary PSK in practice.

ERROR PROBABILITY OF BINARY PSK:

To realize a rule for making a decision in favor of symbol 1 or symbol 0,we partition the signal
space into two regions:

> The set of points closest to message point 1 at +VE;.
& The set of points closest to message point 2 at =V E,.
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This is accomplished by constructing the midpoint of the line joining these two message
points, and then marking off the appropriate decision regions. In Figure 6.3 these decision
regions are marked Z, and Z;, according to the message point around which they are
constructed.

The decision rule is now simply to decide that signal s,(¢) (i.., binary symbol 1) was
transmitted if the received signal point falls in region Z,, and decide that signal s (¢) (i.e.,
binary symbol 0) was transmitted if the received signal point falls in region Z,. Two kinds
of erroneous decisions may, however, be'made. Signal s,(¢) is transmitted, but the noise is
such that the received signal point falls inside region Z, and so the receiver decides in favor
of signal s,(t). Alternatively, signal s,(f) is transmitted, but the noise is such that the re-
ceived signal point falls inside region Z, and so the receiver decides in favor of signal s.(z).

To calculate the probability of making an error of the first kind, we note from Figure
6.3 that the decision region associated with symbol 1 or signal s,(¢) is described by

where the observable element x, is related to the received signal x(t) by

T,
Xy =j x(2)dby(t) dt (6.15)
0

The conditional probability density function of random variable X, given that symbol 0
[i.e., signal s,(2)] was transmitted, is defined by

1 [yt
Fx, (%) ]0) = —\/_'n'T_' €xXp —N; (1 — 521)2]
: Vi [ : (6.16)
= \/ﬂ'_No epr-lvo (% + \/E—b)z]

The conditional probability of the receiver deciding in favor of symbol 1, given that symbol
0 was transmitted, is therefore

po= |, frlxl0) de

1 1 1
= \/w_NOL exp[-—ﬁo (2, + \/E_b)z] dx,

(6.17)
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Putting

1
z= ‘\,'—E (2, + \/E_bj (6.18)

and changing the variable of integration from x, to z, we may rewrite Equation (6.17) in
the compact form

N
Plo—\/;VWCXp 7)) dz

E. (6.19)
= 1 fc( ,’ b)
2 * \( No

where erfc(-) is the complementary error function.
Thus, averaging the conditional error probabilities pyo and Po;, We Iind that the
average probability of symbol error or, equivalently, the bit error rate for coberent binary
PSK is (assuming equiprobable symbols)

P. = = erfc(\‘@:) (6.20)

As we increase the transmitted signal energy per bit, E;, tor a specihed noise spectey|
density N, the message points corresponding to symbols 1 ar}d 0 move furthefr apart, and
the average probability of error P, is correspondingly reduced in accordance with Equatiop
(6.20), which is intuitively satisfying.
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Information Theory
Information theory deals with representation and the transfer of information.

There are two fundamentally different ways to transmit messages: via discrete signals
and via continuous signals. ... For example, the letters of the English alphabet are commonly
thought of as discrete signals.

Information sources
Definition:
The set of source symbols is called the source alphabet, and the elements of the set are
called the symbols or letters.
The number of possible answers ‘ r > should be linked to “information.”

“Information” should be additive in some sense.

We define the following measure of information:

ff-.r.__: = logg 7,

Where ‘ r ’ is the number of all possible outcome so far an do m message U.
Using this definition we can confirm that it has the wanted property of additivity:

~ ~

[0, Vg U) = Loyt =11 Jogy = (1),

The basis ‘b’ of the logarithm b is only a change of units without actually changing the
amount of information it describes.

Classification of information sources

1. Discrete memory less.
2. Memory.

Discrete memory less source (DMS) can be characterized by “the list of the symbols, the
probability assignment to these symbols, and the specification of the rate of generating these
symbols by the source”.

1. Information should be proportion to the uncertainty of an outcome.

2. Information contained in independent outcome should add.

Scope of Information Theory

1. Determine the irreducible limit below which a signal cannot be compressed.
2. Deduce the ultimate transmission rate for reliable communication over a noisy channel.

3. Define Channel Capacity - the intrinsic ability of a channel to convey information.




The basic setup in Information Theory has:
—asource,
—a channel and
— destination.
The output from source is conveyed through the channel and received at the destination.
The source is a random variable S
which takes symbols from a finite alphabet i.e.,

S={s0,s1,s2, = = = ,sk-1}
With probabilities

P(S =sk) =pk wherek=0,1,2, = - - ,k-1
and
k—1,Xk=0 ,pk =1

The following assumptions are made about the source

1. Source generates symbols that are statistically independent.
2. Source is memory less i.e., the choice of present symbol does not depend on the previous

choices.
Properties of Information

1. Information conveyed by a deterministic event is nothing
2. Information is always positive.
3. Information is never lost.

4. More information is conveyed by a less probable event than a more probable event

Entropy:

The Entropy (H(s)) of a source is defined as the average information generated by a

discrete memory less source.




Information content of a symbol:

Let us consider a discrete memory less source (DMS) denoted by X and having the
alphabet {U1, Uz, Us, ...... Um}. The information content of the symbol xi, denoted by I(xi) is
defined as

1
I (U)=1lo
(V) ngu

=-log» P(U)

Where P (U) is the probability of occurrence of symbol U
Units of 1(x):

For two important and one unimportant special cases of b it has been agreed to use the
following names for these units:
b =2(log2): bit,

b =e (In): nat (natural logarithm),
b =10(log10): Hartley.
The conversation of these units to other units is given as

Ina _ loga
In2 log 2

logoa=

Uncertainty or Entropy (i.e Average information)
Definition:

In order to get the information content of the symbol, the flow information on the
symbol can fluctuate widely because of randomness involved into the section of symbols.

The uncertainty or entropy of a discrete random variable (RV) ‘U’ is defined as
H(U)= E[IW)]= 21ty P(u) I (w)

HU)2- Y Pr(u)log, Py(u),

ucsuppl Frrl




Where PU (-) denotes the probability mass function (PMF) 2 of the RV U, and where
the support of P U is defined as

supp(Py) = {u e U: Pylu) # 0.

We will usually neglect to mention “support” when we sum over PU (u) - logs PU (u), i.e., we
implicitly assume that we exclude all u
With zero probability PU (u) =0.

Entropy for binary source

It may be noted that for a binary source U which genets independent symbols 0 and 1
with equal probability, the source entropy H (u) is

1 11 1

H(u)=- E Iong E Iong = 1 b/symbol

Bounds on H (V)

If U has r possible values, then 0 <H(U) <log,
Where
H(U)=0 if, and only if, PU(u)=1 for some u,
H(U)=log r if, and only if, PU(u)= 1/r V u.
Hence, H(U) > 0.Equalitycanonlybeachievedif —PU(u)log2 PU(u)=0
Proof, Since (0 < Pyrlu) < 1, we have
J=0 if Py(u) =1,

— P,'J' (1 | ]l..'"_-_'_‘;g .II_":'__' v, | _ . )
|>0 if0<Pyu)<l.

For all u € supp (PV), i.e., PU (u) =1forall u € supp (PU).
To derive the upper bound we use at rick that is quite common in.

Formation theory: We take the deference and try to show that it must be non positive.




H(U)-logr=- ) Py(u)log Py(u) - logr

ugsuppl Fy)
R Z Byr(u) log Prlu) — Z Byrlu)logr
ucsuppl By ussuppl Fr)
= _ Z Bir(u) log | Pylu
ucauppl Fir)
{ \
= Z }_"i ) ]l*lillll }_" =
HESsN FIFII T 'llll
= I""—Hul'—-"'.
=€
< Z Byl |::r “- log e
._ - Ry
Esuppl £
|
= ( —. - Z Forlu) | loge
uEsuppl Hr u.-:-llFIFll}""
|
= (— | —1 | loge
-\J.'.:'Il.F'F"
|
< (— Z | —1|loge
-\J.'.:I.-'lr :
|
— (— s p—1] l'ug[-}
=(1-1) ]UIE,[*—U

Equality can only be achieved if

1. Inthe IT Inequality  =1,i.e.,if 1r-PU(u)=1== PU(u)= 1r ,for all u;
2. |supp (PU)| =r.

Note that if Conditionl] is satisfied, Condition 2 is also satisfied.




Conditional Entropy

Similar to probability of random vectors, there is nothing really new about conditional
probabilities given that a particular event Y =y has occurred.

The conditional entropy or conditional uncertainty of the RV X given the event Y =y is
defined as

"-F_IIE PP N P o]
X} =y=- Z .Ir'l_\; yid ||}..]l35.lr'|_1l' yid )
raupp( Py v ({y))

= E[-log Pyy(X|Y) | Y =y .

Note that the definition is identical to before apart from that everything is conditioned

ontheeventY =y

0<HXY =y) <logr;

HIXIY=y)=0 i, and only if, Plzly)=

for some x;

|
P " .y e . |
HIXY =y =logr if and onlyif Plzy)=-
.

Note that the conditional entropy given the event Y =y is a function of y. Since Y is
also a RV, we can now average over all possible events Y =y according to the probabilities

of each event. This will lead to the averaged.

Mutual Information

Although conditional entropy can tell us when two variables are completely
independent, it is not an adequate measure of dependence. A small value for H(Y| X) may
implies that X tells us a great deal about Y or that H(Y) is small to begin with. Thus, we
measure dependence using mutual information:

1(X,Y) =H(Y)-H(Y|X) |

Mutual information is a measure of the reduction of randomness of a variable given
knowledge of another variable. Using properties of logarithms, we can derive several equiva-

lent definitions




1(X,Y)=H(X)-H(X| Y)

1(X,Y) = HOX)+H(Y)-H(X,Y) = I(Y,X)

In addition to the definitions above, it is useful to realize that mutual information is a
particular case of the Kullback-Leibler divergence. The KL divergence is defined as:

p(x)

q(x)

D(p||q) = J‘p(\)log

KL divergence measures the difference between two distributions. It is sometimes called the
relative entropy. It is always non-negative and zero only when p=q; however, it is not a

distance because it is not symmetric.

In terms of KL divergence, mutual information is:

P(X,Y)
P(X)P(Y)
In other words, mutual information is a measure of the difference between the joint

D(R(X, V)| [PX)P(Y))) = [BIX,Y)log

probability and product of the individual probabilities. These two distributions are equivalent

only when X and Y are independent, and diverge as X and Y become more dependent.
Source coding

Coding theory is the study of the properties of codes and their respective fitness for
specific applications. Codes are used for data compression, cryptography, error-
correction, and networking. Codes are studied by various scientific disciplines—such as
information theory, electrical engineering, mathematics, linguistics, and computer
science—for the purpose of designing efficient and reliable data transmission methods.
This typically involves the removal of redundancy and the correction or detection of
errors in the transmitted data.

The aim of source coding is to take the source data and make it smaller.

All source models in information theory may be viewed as random process or random
sequence models. Let us consider the example of a discrete memory less source

(DMS), which is a simple random sequence model.

A DMS is a source whose output is a sequence of letters such that each letter is

independently selected from a fixed alphabet consisting of letters; say a1, a2,

9
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.......... ak. The letters in the source output sequence are assumed to be random

and statistically

Independent of each other. A fixed probability assignment for the occurrence of
each letter is also assumed. Let us, consider a small example to appreciate the
importance of probability assignment of the source letters.

Let us consider a source with four letters a1, a2, a3 and a4 with P(a1)=0.5,
P(a2)=0.25, P(a3)= 0.13, P(a4)=0.12. Let us decide to go for binary coding of these

four

Source letters While this can be done in multiple ways, two encoded representations
are shown below:

Code Representation#1:

a1: 00, a2:01, a3:10, a4:11

Code Representation#2:
a1: 0, a2:10, a3:001, a4:110

It is easy to see that in method #1 the probability assignment of a source letter has not

been considered and all letters have been represented by two bits each. However in

The second method only a1 has been encoded in one bit, a2 in two bits and the
remaining two in three bits. It is easy to see that the average number of bits to be used
per source letter for the two methods is not the same. ( a for method #1=2 bits per
letter and a for method #2 < 2 bits per letter). So, if we consider the issue of encoding

a long sequence of

Letters we have to transmit less number of bits following the second method. This
is an important aspect of source coding operation in general. At this point, let us
note
d We observe that assignment of small number of bits to more probable letters and
assignment of larger number of bits to less probable letters (or symbols) may lead to

efficient source encoding scheme.

10




b) However, one has to take additional care while transmitting the encoded letters. A
careful inspection of the binary representation of the symbols in method #2 reveals
that it may lead to confusion (at the decoder end) in deciding the end of binary
representation of a letter and beginning of the subsequent letter.

So a source-encoding scheme should ensure that
1) The average number of coded bits (or letters in general) required per source letter
is as small as possible and

2) The source letters can be fully retrieved from a received encoded sequence.

11




Shannon-Fano Code

Shannon—Fano coding, named after Claude Elwood Shannon and Robert Fano, is a technique
for constructing a prefix code based on a set of symbols and their probabilities. It is
suboptimal in the sense that it does not achieve the lowest possible expected codeword length
like Huffman coding; however unlike Huffman coding, it does guarantee that all codeword
lengths are within one bit of their theoretical ideal /(x) =—/log P(x).

In Shannon-Fano coding, the symbols are arranged in order from most probable to least
probable, and then divided into two sets whose total probabilities are as close as possible to
being equal. All symbols then have the first digits of their codes assigned; symbols in the first
set receive "0" and symbols in the second set receive "1". As long as any sets with more than
one member remain, the same process is repeated on those sets, to determine successive
digits of their codes. When a set has b? redu ymbol, of course, this means the

symbol's code is complete and will not f@¥m the other symbol's code.

The algorithm works, and it produces fairly efficient variable-length encodings; when the two
smaller sets produced by a partitioning are in fact of equal probability, the one bit of
information ysed jo, distinguish,therg i most efficient]y. Unfortunately, Shanngn—Fano
20 g StinaUpjIneT] dsplsag mostyetfiplenly. fnfortunately, Shannp

does not always produce optimal prefix codes.

For this reason, Shannon—Fano is almost never used; Huffman coding is almost as
compl&tationally simple and produces prefix codes that always achieve the lowest expected
code word length. Shannon—Fano coding is used in the IMPLODE compression method,

which is part of the ZIP file format, where it is desired to apply a simple algorithm with high

performance and minimum requirements for programming.
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Shannon-Fano Algorithm:

A Shannon—Fano tree is built according to a specification designed to define an
effective code table. The actual algorithm is simple:

For a given list of symbols, develop a corresponding list of probabilities or frequency

counts so that each symbol’s relative frequency of occurrence is known.

7 Sort the lists of symbols according to frequency, with the most frequently
occurring
Symbols at the left and the least common at the right.
~1 Divide the list into two parts, with the total frequency counts of the left part being
as
Close to the total of the right as possible.
71 The left part of the list is assigned the binary digit 0, and the right part is assigned
the digit 1. This means that the codes for the symbols in the first part will all start
with 0, and the codes in the second part will all start with 1.

Recursively apply the steps 3 and 4 to each of the two halves, subdividing groups
and adding bits to the codes until each symbol has become a corresponding code leaf

on the tree.

Example:
The source of information A generates the symbols {A0, A1, A2, A3 and A4} with the
corresponding probabilities {0.4, 0.3, 0.15, 0.1 and 0.05}. Encoding the source symbols

using binary encoder and Shannon-Fano encoder gives

Source Symbol Pi Binary Code Shannon-Fano
A0 0.4 000 0

Al 0.3 001 10

A2 0.15 010 110

A3 0.1 011 1110

Ad 0.05 100 1111

Lavg H =2.0087 3 2.05

13




The average length of the Shannon-Fano code is

4
Lavg = Z Pili= 04+14+03%24+0.15*%3+0.1*4+0.05+4 = 2.05 bit/symbol
i=0

Thus the efficiency of the Shannon-Fano code 1s

H 20087

= = = 989
1 Lavg 2.05 .

This example demonstrates that the efficiency of the Shannon-Fano encoder is much higher

than that of the binary encoder.

Shanon-Fano code is a top-down approach. Constructing the code tree, we get

@

1

o

9/[O¥cXoIo
o @

10 ‘0

110 :lo :l 2
The Entropy of the source 1s
4
H= —Z Pi log, Pi = 2.0087 bit/symbol
i=0

: = =, s = 3 : 2
Since we have 5 symbols (5<8=27), we need 3 bits at least to represent each symbol in binary

(fixed-length code). Hence the average length of the binary code is

4
Lavg = 2 Pili= 3(0.4+ 0.3+ 0.15+ 0.1 + 0.05) = 3 bit/symbol
i=0
Thus the efficiency of the binary code 1s

H 2.0087

= =679
Lavg 3 &

fi=




Binary Huffman Coding (an optimum variable-length source coding scheme)

In Binary Huffman Coding each source letter is converted into a binary code
word. It is a prefix condition code ensuring minimum average length per source letter in
bits.

Let the source letters a1, a2, .......... ak have probabilities P(a1), P(a2),.............

P(ak) and let us assume that P(a1) > P(a2) > P(a 3)>.... > P(aK).

We now consider a simple example to illustrate the steps for Huffman coding.
Steps to calculate Huffman Coding

Example Let us consider a discrete memory less source with six letters having

P(a1)=0.3,P(a2)=0.2, P(a 3)=0.15, P(a 4)=0.15, P(as)=0.12 and P(as)=0.08.

~Arrange the letters in descending order of their probability (here they are

arranged).

"Consider the last two probabilities. Tie up the last two probabilities. Assign, say, 0
to the last digit of representation for the least probable letter (as) and 1 to the last
digit of representation for the second least probable letter (as). That is, assign ‘1’

to the wupper arm of the tree and ‘0’ to the lower arm.

1
P(a5)=0.12

0.2

P(a6)=0.08
0

(3)Now, add the two probabilities and imagine a new letter, say b1, substituting for as
and as. So P(b1) =0.2. Check whether a4 and bzare the least likely letters. If not,
reorder the letters as per Step#1 and add the probabilities of two least likely letters.

For our example, it leads to:
P(a1)=0.3, P(a2)=0.2, P(b1)=0.2, P(a3)=0.15 and P(a4)=0.15

15




(4) Now go to Step#2 and start with the reduced ensemble consisting of a1 , a2, a3,

1
P(a3)=0.15

0.3
P(a4)=0.15

a4 and b1. Our example results in:

Here we imagine another letter b1, with P(b2)=0.3.

Continue till the first digits of the most reduced ensemble of two letters are

assigned a ‘1° and a ‘0.

Again go back to the step (2): P(a1)=0.3, P(b2)=0.3, P(a2)=0.2 and P(b1)=0.2.

Now we consider the last two probabilities:

P{32}=02 ——

P(D1)=0.2 cm—

So, P(b3)=0.4. Following Step#2 again, we get, P(b3)=0.4, P(a1)=0.3 and
P(b2)=0.3.

Next two probabilities lead to:

P{ﬁl}:O3 ———

P{b2}=0.3 ——

With P(b4) = 0.6. Finally we get only two probabilities

16




P(b4)=0.6

P(b3)=0.4

6. Now, read the code tree inward, starting from the root, and construct the
code words. The first digit of a codeword appears first while reading the code tree

inward.

Hence, the final representation is: a1=11, a2=01, a3=101, a4=100, a5=001, as=000.
A few observations on the preceding example

1. The event with maximum probability has least number of bits

2. Prefix condition is satisfied. No representation of one letter is prefix for other.
Prefix condition says that representation of any letter should not be a part of any

other letter.

3. Average length/letter (in bits) after coding is
= ZP (ai )ni = 2.5 bits/letter.

4. Note that the entropy of the source is: H(X)=2.465 bits/symbol. Average length
per source letter after Huffman coding is a little bit more but close to the source
entropy. In fact, the following celebrated theorem due to C. E. Shannon sets the

limiting value of average length of code words from a DMS.

Shannon-Hartley theorem

In information theory, the Shannon-Hartley theorem tells the maximum rate at which
information can be transmitted over a communications channel of a specified bandwidth in
the presence of noise. It is an application of the noisy-channel coding theorem to the
archetypal case of a continuous-time analog communications channel subject to Gaussian

noise. The theorem establishes Shannon's channel capacity for such a communication link, a
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bound on the maximum amount of error-free information per time unit that can be transmitted
with a specified bandwidth in the presence of the noise interference, assuming that the signal
power is bounded, and that the Gaussian noise process is characterized by a known power or
power spectral density.

The law is named after Claude Shannon and Ralph Hartley.

Hartley Shannon Law

The theory behind designing and analyzing channel codes is called Shannon’s noisy
channel coding theorem. It puts an upper limit on the amount of information you can
send in a noisy channel using a perfect channel code. This is given by the following

equation:

C = B x log,(1 + SNR)

where C is the upper bound on the capacity of the channel (bit/s), B is the
bandwidth of the channel (Hz) and SNR is the Signal-to-Noise ratio (unit less).

Bandwidth-S/N Tradeoff

The expression of the channel capacity of the Gaussian channel makes intuitive

Sense:

1. As the bandwidth of the channel increases, it is possible to make faster
changes in the information signal, thereby increasing the information rate.

2 As S/N increases, one can increase the information rate while still preventing errors

due to noise.

3 For no noise, S/N tends to infinity and an infinite information rate is

possible irrespective of bandwidth.

Thus we may trade off bandwidth for SNR. For example, if S/N = 7 and B = 4kHz,
then the channel capacity is C = 12 x102 bits/s. If the SNR increases to S/N = 15 and B
is decreased to 3kHz, the channel capacity remains the same. However, as B tends to
1, the channel capacity does not become infinite since, with an increase in bandwidth,
the noise power also increases. If the noise power spectral density is n/2, then the total

noise power is N = nB, so the Shannon-Hartley law becomes
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Noting that
im(l+x)"" =e

X—u
and identifving x as x = S/n B, the channel capacity as B increases
without bound becomes

” TR S
Coo= Im C==l0g,e=144—.
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UNIT IV
Linear Block Codes

Introduction

Coding  theory is concerned  with  the  transmission of data
across noisy channels and the recovery of corrupted messages. It has found
widespread  applications in electrical  engineering,  digital communication,
mathematics and computer science. The transmission of the data over the channel depends
upon two parameters. They are transmitted power and channel bandwidth. The power spectral
density of channel noise and these two parameters determine signal to noise power ratio.

The signal to noise power ratio determine the probability of error of the modulation
scheme. Errors are introduced in the data when it passes through the channel. The channel
noise interferes the signal. The signal power is reduced. For the given signal to noise ratio, the
error probability can be reduced further by using coding techniques. The coding techniques
also reduce signal to noise power ratio for fixed probability of error.

Principle of block coding

For the block of k message bits, (n-k) parity bits or check bits are added. Hence the
total bits at the output of channel encoder are ‘n’. Such codes are called (n,k)block
codes.Figure illustrates this concept.

Message block Code block
. Channel
input —————— — > output
Encoder
Message Message Check bits
) — —« —>
Kbits k (n-K)

) - «— nbits ]

Figure: Functional block diagram of block coder
Types are
Systematic codes:

In the systematic block code, the message bits appear at the beginning of the code
word. The message appears first and then check bits are transmitted in a block. This type of
code is called systematic code.

Nonsystematic codes:

In the nonsystematic block code it is not possible to identify the message bits and

check bits. They are mixed in the block.
1




Consider the binary codes and all the transmitted digits are binary.
Linear Block Codes

A code is linear if the sum of any two code vectors produces another code vector.
This shows that any code vector can be expressed as a linear combination of other code
vectors. Consider that the particular code vector consists of m¢,mz, ms,...mx message bits and
C1,C2,C3...cqcheck bits. Then this code vector can be written as,

X=(mg,my,ms,...mkC1,C2,C3...Cq)
Here g=n-k
Whereq are the number of redundant bits added by the encoder.
Code vector can also be written as
X=(M/C)
Where M= k-bit message vector
C= g-bit check vector

The main aim of linear block code is to generate check bits and this check bits are
mainly used for error detection and correction.

Example :

The (7, 4) linear code has the following matrix as a generator matrix

(g, ] [1 1 0o 1 0 0 O]
O 1 1 0 1 O O
G — g1 _
g, 1 1 1 0 0 1 0
g, |1 0 1 0 O O 1|

Ifu=(1101)isthe message to be encoded, its corresponding code word would be
v=1l-g,+1-g,+0-g,+1-2;
=(1101000)+(0110100)+(1010001)
=(0001101)

A linear systematic (n, k) code is completely specified by ak x n matrix G of the
following form




}_7 P matrix ——\-— k x k identity matrix —

2o Poo Po - Pon—r | 1 0 O 0
2 Pro P - Py | 0 1 O 0
£ P P - Pory_ika | 0 0 1 0
|
|
| 8x1 | | Prao Prax - - - Prania | 0 0 0 0 0 O 1_
where p, =0o0r 1
Let u = (Uo, U1, ..., uk-1) be the message to be encoded.The corresponding code word
is

Vv = (1)0 B R © )

- (u0>ul>""uk-1). G

The components of v are

= Uu. forO0<i<k

p) .
1 n-k—+i I

vV, =uUgpoi Uy py;t o YU Py, for0< j<n-k

The n — k equations given by above equation are called parity-check equations of the
code

Example for Codeword

The matrix G given by

g, 1 1. 0 1 0 O O
O 1 1 0 1 0 O
G — g1 | _
g, 1 1 1 0 0 1 O
g, [1 0 1 0 0 O 1|

Let u = (uo, U1, Uz, U3) be the message to be encoded and v = (Vo, V1, V2, V3, V4, Vs5,V6) be
the corresponding code word




Solution :

v:u.G :(H{},If‘ljuz,uz’).

[ 1
0
1

1

1
1
1
O

0O
1
1
1

© o o =

© O = O

©C = O O
- QO O O

By matrix multiplication, the digits of the code word v can be determined.

Ve — U3
V. = &,
Va4 = U
V3 = Uy
vz :Hl —|—Il"2 —|—u3
Vv, =ty + 2, + 2,
Vo = Wy + U, + iy

The code word corresponding to the message (101 1)1s(100101 1)

If the generator matrix of an (n, k) linear code is in systematic form, the parity-check
matrix may take the following form

H=[1,_, P’

1 0 O
O 1 O
0O 0 1

|0 0 O

J

o Poo
o Poi
o Poo>
1 pO,n—k—l

Pio
P
P>

pl,n—k—l

Encoding circuit for a linear systematic (n,k) code is shown below.

Pirio
Pria
Prio

pk—l,n—k—l <]




0 To channel

Input u

Parity register

Figure: Encoding Circuit

For the block of k=4 message bits, (n-k) parity bits or check bits are added. Hence
the total bits at the output of channel encoder are n=7. The encoding circuit for (7, 4)
systematic code is shown below.

(o]

Message register

g uy - uy Uy

!)\ To channel

(r/

Parity register

Figure: Encoding Circuit for (7,4) code

Syndrome and Error Detection

Let v =(vo, V1, ..., vn-1) be a code word that was transmitted over a noisy channel. Let
r =(ro, r1, ..., rn1) be the received vector at the outputof the channel




=WV + e

-

()
S

Where

e=r+v=(eo €1, ..., en1) is an n-tuple and the n-tuple ‘e’ is called the
error vector (or error pattern).The condition is

ei=1forri#£vi

ei=0 forri=v;

Upon receiving r, the decoder must first determine whether r contains transmission
errors. If the presence of errors is detected, the decoder will take actions to locate the errors,
correct errors (FEC) and request for a retransmission of v.

When r is received, the decoder computes the following (n — k)-tuple.
s=re*HT
S =(So, S1, .., Sn-k-1)

where s is called the syndrome of r.

The syndrome is not a function of the transmitted codeword but a function of error
pattern. So we can construct only a matrix of all possible error patterns with corresponding
syndrome.

When s =0, if and only if r is a code word and hence receiver accepts r as the
transmitted code word. When s# 0, if and only if r is not a code word and hence the presence
of errors has been detected. When the error pattern e is identical to a nonzero code word (i.e.,
r contain errors but s =r « HT = 0), error patterns of this kind are called undetectable error
patterns. Since there are 2k — 1 non-zero code words, there are 2k — 1 undetectable error
patterns. The syndrome digits are as follows:

So=ro+ I'nk Poo + M+l pro+ -+ + M1 Pk-1,0
S1=r1+ rmkpPor+ rmktl pur+ -+ + MmapPris

Snk-1= I'n-k-1+ I'n-k Po,nk-1 + M-k+1 P1,nk-1+ ==+ + -1 Pk-1,n-k-1

The syndrome s is the vector sum of the received parity digits (ro,r1,...,rn-k-1) and the parity-
check digits recomputed from the received information digits (rn«,fnk+1,...,rn-1).

The below figure shows the syndrome circuit for a linear systematic (n, k) code.




Figure: Syndrome Circuit

Error detection and error correction capabilities of linear block codes:

If the minimum distance of a block code C is dmin, any two distinct code vector of C
differ in at least dmin places. A block code with minimum distance dmin is capable of detecting
all the error pattern of dmin— 1 or fewer errors.

However, it cannot detect all the error pattern of dmin errors because there exists at least
one pair of code vectors that differ in dmin places and there is an error pattern of dmin errors
that will carry one into the other. The random-error-detecting capability of a block code with
minimum distance dmin is dmin—1.

An (n, K) linear code is capable of detecting 2n — 2k error patterns of length n
Among the 2n — 1 possible non zero error patterns, there are 2k — 1 error patterns that are
identical to the 2k — 1 non zero code words. If any of these 2k — 1 error patterns occurs, it
alters the transmitted code word v into another code word w, thus w will be received and its
syndrome is zero.

If an error pattern is not identical to a nonzero code word, the received vector r will
not be a code word and the syndrome will not be zero.

Hamming Codes:

These codes and their variations have been widely used for error control
in digital communication and data storage systems.

For any positive integer m > 3, there exists a Hamming code with the following parameters:
Code length:n=2m -1

Number of information symbols: k =2m-m -1

Number of parity-check symbols: n — k = m

Error-correcting capability: t = 1(dmin= 3)




The parity-check matrix H of this code consists of all the non zero m-tuple as its columns
(2m-1)

In systematic form, the columns of H are arranged in the following form
H= [lm Q]
where Iy is an m x m identity matrix
The sub matrix Q consists of 2m — m — 1 columns which are the m-tuples of weight 2 or
more. The columns of Q may be arranged in any order without affecting the distance property
and weight distribution of the code.

In systematic form, the generator matrix of the code is

G =[QT I2Zm-m-1]
where QT is the transpose of Q and | 2m—m-1 is an (2m — m— 1) x(2m —m— 1)
identity matrix.
Since the columns of H are nonzero and distinct, no two columns add to zero. Since H
consists of all the nonzero m-tuples as its columns, the vector sum of any two columns, say h;
and h;, must also be a column in H, say hihi+ hj+ h;= 0.The minimum distance of a Hamming
code is exactly 3.

Using H' as a parity-check matrix, a shortened Hamming code can be obtained with
the following parameters :
Code length:n=2m—-1-1
Number of information symbols: k=2m-m-1-1
Number of parity-check symbols: n—k =m
Minimum distance : dmin> 3
When a single error occurs during the transmission of a code vector, the resultant
syndrome is nonzero and it contains an odd number of 1’s (e x H’T corresponds to a column
in H’). When double errors occurs, the syndrome is nonzero, but it contains even number of
I’s.
Decoding can be accomplished in the following manner:
i) If the syndrome s is zero, we assume that no error occurred
i) If s is nonzero and it contains odd number of 1’s, assume that a single error
occurred. The error pattern of a single error that corresponds to s is added to the received
vector for error correction.
iii) If s is nonzero and it contains even number of 1’s, an uncorrectable error
pattern has been detected.




Problems:

1.

The parity check bits of a (8.4) block code are generated by
c, =m, +m, +m,
c,=m, +m +m,
c, =m, +m, +m,

c,=m +m, +m,

where m, . m,.m, and m_ are the message digits.

(a) Find the generator matrix and the parity check matrix for this code.
(b) Find the minimum weight of this code.

(c) Find the error-detecting capabilities of this code.

(d) Show through an example that this code can detect three errors/codeword.

Solution

1 1 1 O 1
1 1 (0} 1. 1
Ifay ¢ =[c, ---c, 1=[H, ---Hyme, ---ma, | = [rr, ---mrr, ] O . " l_I_l |
1 o 1 1 1
1 1 1 o
1 1 L] 1.
Theretore., & = =
L8] 1 1 1
1 ] 1 1
1 I LB 1
1 I 1 L8]
and then H = | T, :
1 L) 1 1
o I 1 1
(b}
I L
OO0 OO0 OO0
001 1011 OO0 1
0 10 o111 OO10
0011 1100 0011
[y ale 11001 O oo
0101 0110 Olod
o1 10 1O 1O O] 10
o111 o001 0111
1 OO0 1110 1000
1001 0101 1001
1010 1001 1010
1011 0010 101 1
1 100 o011 1100
1 101 1000 1101
1110 Olo0 1110
1111 1111 1111

Therefore., minimum weight = 4




(c) d__. =minimum weight = 4

Therefore. error-detecting capability = d_,_ —1=3

(d) Suppose the transmitted code be 00000000 and the received code be 11100000.

B B 0|
s=rH'=[]]IﬂﬂﬂOO]-I4:] o | =triomo

01 1 1]

Binary Cyclic codes:

Cyclic codes are the sub class of linear block codes.
Cyclic codes can be in systematic or non systematic form.
Definition:

A linear code is called a cyclic code if every cyclic shift of the code vector produces
some other code vector.

ies of cvell s:
(0 Linearity (i) Cyclic

Linearity: This property states that sum of any two code words is also a valid code word.
X1+Xo=X3
Cyclic: Every cyclic shift of valid code vector produces another valid code vector.
Consider an n-bit code vector
X = {Xn-1,X0-2y veeevveeeinineeiiinnans X1,X0}
Here Xn-1, Xn-2 ....X1, Xorepresent individual bits of the code vector ‘X’.
If the above code vector is cyclically shifted to left side i.e., One cyclic shift of X gives,

X’= {Xn-2 ....X1, Xo, Xn-1}
Every bit is shifted to left by one position.

Algebraic Structures of Cyclic Codes:

The code words can be represented by a polynomial. For example consider the n-bit code
WOrd X = {Xn-1,Xn-2, veeeeiivrieeeniiinnnnn. X1,X0}.

10




This code word can be represented by a polynomial of degree less than or equal to (n-1)
ie.,

X(P)=Xn-1P" 4 Xn2P 2 H e +X1p+Xo
Here X(p) is the polynomial of degree (n-1)
p- Arbitrary variable of the polynomial
The power of p represents the positions of the codeword bits i.e.,
p"t-MSB
p° --LSB
p -- Second bit from LSB side
Polynomial representation due to the following reasons

(0 These are algebraic codes, algebraic operations such as addition,
multiplication, division, subtraction etc becomes very simple.
(i) Positions of the bits are represented with help of powers of p ina

polynomial.
- . f cod s in Non- ic £ )
Let M= {Mk-1, Mk2,..cvevineininannnns my,Mo} be ‘k’ bits of message vector. Then it can be

represented by the polynomial as,
M(P)=Mk-1p* +Mi2p 2+ e, +Mmup+mo
Let X(p) be the code word polynomial
X(P)=M(p)G(p)
G(p) is the generating polynomial of degree ‘q’
For (n,Kk) cyclic codes, g=n-k represent the number of parity bits.
The generating polynomial is given as

G(p)= pHHgg1p?H+ e +g1p+1
WAHEIE Qg-1, Jg2s «veeereemeeemmeennnaninans g1 are the parity bits.

11




If M1, M2, M3
code vectors can be calculated as

X1(p) =M1 (p) G (p)
X2(p) =Mz (p) G (p)
X3(p) =Ms (p) G (p)

neration of vectors in matic form:
X = (k message bits : (n-k) check bits) = (Mk-1,Mk2, .ceervvererrennnne M1,Mo : Cq-1,Cq-
2y e, C1,Co)
C (p) = Cq1pT™+Cq2pd%+ v, +C1p+Co

The check bit polynomial is obtained by

qM(p)]

G(p)
| ity Check Matri i lic codes:
ic f f .

Since cyclic codes are sub class of linear block codes, generator and parity check matrices
can also be defined for cyclic codes.

C(p)=rem[2

The generator matrix has the size of k x n.

Let generator polynomial given by equation

ic f E -
Systematic form of generator matrix is given by
G= [k : Prxq]kxn
The t" row of this matrix will be represented in the polynomial form as follows
t" row of G = p™* + Ry(p)
Wheret=1,2,3 ............. k

12

.................................... etc are the other message vectors, then the corresponding




Lets divide p™*by a generator matrix G(p). Then we express the result of this division in
terms of quotient and remainder i.e.,

p"t Quoti Remainder
—— = Quotient + ——~——
G(p) G(p)

Here remainder will be a polynomial of degree less than g, since the degree of G(p) is ‘q’.
The degree of quotient will depend upon value of t
Lets represent Remainder = Ry¢(p)

Quotient = Q«(p)

n—t R(p)
P _
@ QP ey

p"t = Qu(p)G(p) + Re(p)

Andt=1.2,. ..o k

"t + Re(p) = Qe(p)G(p)

Represents t™ row of systematic generator matrix

Parity check matrix H=[PT: lg]gxn

The feedback switch is first closed. The output switch is connected to message input.
All the shift registers are initialized to zero state. The ‘k’ message bits are shifted to the
transmitter as well as shifted to the registers.

13




After the shift of ‘k’ message bits the registers contain ‘q’ check bits. The feedback

switch is now opened and output switch is connected to check bits position. With the every
shift, the check bits are then shifted to the transmitter.

The block diagram performs the division operation and generates the remainder.
Remainder is stored in the shift register after all message bits are shifted out.

ndrome D ing. Error D ion and Error Correction:

In cyclic codes also during transmission some errors may occur. Syndrome decoding can
be used to correct those errors.

Lets represent the received code vector by Y.
If “‘E’ represents the error vector then the correct code vector can be obtained as
X=Y+E or Y=X+E
In the polynomial form we can write above equation as
Y(p) = X(p)+E(p)
X(p) = M(p)G(p)
Y(p)= M(p)G(p) + E(p)

Y(p) _ Remainder
m = Quotient + —G(p)
I£Y (p)=X(p)
X(p) _ Remainder
TP) = Quotient + —G(p)
Y®) R(p)
TP) =Q(p) + m

Y (P)=Q(p)G(p) + R(p)

Clearly R(p) will be the polynomial of degree less than or equal to g-1

Y (p) =Q (p) G (p) +R (p)
M(p)G(p)+E(p)=Q(p)G(p)+R(p)
E(p)=M(p)G(p)*+Q(p)G(p)+ R(p)

14




E(P)=[M(p)+Q(p)IG(p)+R(p)

This equation shows that for a fixed message vector and generator polynomial, an
error pattern or error vector ‘E’ depends on remainder R.

For every remainder ‘R’ there will be specific error vector. Therefore we can call the
remainder vector ‘R’ as syndrome vector ‘S’, or R(p)=S(p). Therefore

Y(p) S(p)
m =Q(p) + m

Thus Syndrome vector is obtained by dividing received vector Y (p) by G (p) i.e.,

Y ()
$(p) = remize]

There are ‘q’ stage shift register to generate ‘q’ bit syndrome vector. Initially all the
shift register contents are zero & the switch is closed in position 1.

The received vector Y is shifted bit by bit into the shift register. The contents of flip
flops keep changing according to input bits of Y and values of g1,92 etc.

After all the bits of Y are shifted, the ‘q’ flip flops of shift register contain the q bit
syndrome vector. The switch is then closed to position 2 & clocks are applied to shift register.
The output is a syndrome vector S= (Sg-1, Sq2 ....S1, So)

Decoder of Cyclic Codes:
Once the syndrome is calculated, then an error pattern is detected for that particular

syndrome. When the error vector is added to the received code vector Y, then it gives
corrected code vector at the output.

15




The switch named Sout is opened and Sin is closed. The bits of the received vector Y
are shifted into the buffer register as well as they are shifted in to the syndrome calculator.
When all the n bits of the received vector Y are shifted into the buffer register and Syndrome
calculator the syndrome register holds a syndrome vector.

Syndrome vector is given to the error pattern detector. A particular syndrome detects
a specific error pattern.

Sin is opened and Sout is closed. Shifts are then applied to the flip flop of buffer
registers, error register, and syndrome register.

The error pattern is then added bit by bit to the received vector. The output is the
corrected error free vector.

16




Unit-5

Convolution codes
Definition of Convolutional Coding

A convolutional coding is done by combining the fixed number of input bits. The
input bits are stored in the fixed length shift register and they are combined with the
help of mod-2 adders. This operation is equivalent to binary convolution and hence it
is called convolutional coding. This concept is illustrated with the help of simple
example given below.

Previous two successive message
This bil represent . :
bits are stored in those two flip-flops.
CUITSTE THESSI0S UH ¥ Those two bits (m,,m,) represent

This bit is the part .
of shift register —N— state of shift register
Message
bits input o iy "

Fig. 4.4.1 Convolutional encoder with k=3, k=1and n =2

Operation :

Whenever the message bit is shifted to position ‘m’, the new values of x, and x,
are generated depending upon m, m; and m,. m; and m, store the previous two
message bits. The current bit is present in m. Thus we can write,

1'1 = mem,emz ees (4.4.1)
and X, = m@m, ... (442)

The output switch first samples x; and then x,. The shift register then shifts
contents of m; to m, and contents of m to m,. Next input bit is then taken and stored
in m. Again x; and x, are generated according to this new combination of
m,m, and m, (equation 44.1 and equation 44.2). The output switch then samples
X, then x,. Thus the output bit stream for successive input bits will be,

X = X3XpX;X3X,X, .... and so on .. (44.3)




Here note that for every input message bit two encoded output bits x; and x, are
transmitted. In other words, for a single message bit, the encoded code word is two

bits i.e. for this convolutional encoder,

Number of message bits, k = 1
Number ot encoded output bits for one message bit, n = 2

4411 Code Rate of Convolutional Encoder
The code rate of this encoder is,

k.1
R ey ... (444)

In the encoder of Fig. 4.4.1, observe that whenever a particular message bit enters
a shift register, it remains in the shift register for three shifts i.e.,

First shift — Message bit is entered in position ‘m’.
Second shift — Message bit is shifted in position m,.
Third shift — Message bit is shifted in position m,.

And at the fourth shift the message bit is discarded or simply lost by overwriting.
We know that x, and x, are combinations of m, m,, m,. Since a single message bit
remains in m during first shift, in m; during second shift and in m, during third shift;
it influences output x, and x, for ‘three’ successive shifts.

4412 Constraint Length (K)

The constraint length of a convolution code is defined as the number of shifts over
which a single message bit can influence the encoder output. It is expressed in terms
of message bits.

For the encoder of Fig. 44.1 constraint length K = 3 bits. This is because in this
encoder, a single message bit influences encoder output for three successive shifts. At
the fourth shift, the message bit is lost and it has no effect on the output.

4.4.1.3 Dimension of the Code

The dimension of the code is given by n and k. We know that 'k’ is the number of
message bits taken at a time by the encoder. And 'n' is the encoded output bits for
one message bits. Hence the dimension of the code is (n, k). And such encoder is
called (n, k) convolutional encoder. For example, the encoder of Fig. 4.4.1 has the
dimension of (2, 1).




442 Time Domain Approach to Analysis of Convolutional Encoder

Let the sequence lgt,” ; g(," ‘ g(zl) ...... gf,,”l denote the impulse response of the adder

which generates x; in Fig. 4.4.1 Similarly, Let the sequence Igz)z). g(‘z’ . g(..,z’ ...... gf,;")l

denote the impulse response of the adder which generates x, in Fig. 4.4.1. These
impulse responses are also called generator sequences of the code.

Let the incoming message sequence be [my, m,, m,....... }. The encoder generates
the two output sequences x; and x,. These are obtained by convolving the generator
sequences with the message sequence. Hence the name convolutional code is given.

The sequence x, is given as,

_ ﬁ (1)
X =% -1 08: m;_| w03 2w .. (4.4.6)

Here m;_, = 0 for all I>i. Similarly the sequence x, is given as,

x; = X = f g m;_; i 042 .. (44.7)
=0

Note : All additions in above equations are as per mod-2 addition rules.

As shown in the Fig. 4.4.1, the two sequences x; and x, are multiplexed by the
switch. Hence the output sequence is given as,

[Il'| 0o 5

v, = x'm - {x{,” .\"l" x‘z" .\'(3') ........ }

1) (2) () (2) (1) A2) (1) (2
{xg’x( ) D x(l)x(z)x(z)x(3’x‘3’ ...... } .. (44.8)

(2) _ §,02) (2) (2) ,(2)
x; -{xo X3 X3 X3'seesees }

U3

Observe that bits from above two sequences are multiplexed in equation (4.4.8)
The sequence {x;} is the output of the convolutional encoder.




Transform Domain Approach to Analysis of Convolutional Encoder

In the previous section we observed that the convolution of generating sequence
and message sequence takes place. These calculations can be simplified by applying

the transformations to the sequences. Let the impulse responses be represented by
polynomials. i.e.,

M) = gt)” +g‘l”p +g(2”p2+ ...... "’3(1»11) pM .. (4.4.13)

@ (p) = g{)Z) +g(12)p +g(22)p2+ ...... +gg)pM . (44.14)
Thus the polynomials can be written for other generating sequences. The variable

‘P’ is unit delay operator in above equations. It represents the time delay of the bits in
impulse response.
Similarly we can write the polynomial for message polynomial i.e.,

m(p) = mgy+mp +mzp2+ ........ + mL_lp‘-'l .. (44.15)

Here L is the length of the message sequence. The convolution sums are converted
to polynomial multiplications in the transform domain. i.e.,

xD(p)

gM(p) - m(p)
g2 (p) - m(p) .. (4.4.16)

The above equations are the output polynomials of sequences x}” and x'?

i .

Code Tree, Trellis and State Diagram for a Convolution Encoder




Now let’s study the operation of the convolutional encoder with the help of code
tree, trellis and state diagram. Consider again the convolutional encoder of Fig. 4.4.1.
It is reproduced below for convenience.

Previous two successive message
a“l'rrr\:mb::‘:;::r;l bits are stored in those two flip-flops.
This bit is the part ¥ Those two bits (m,,m,) represent
of shift register — state of shift register

Message
bits input mimm ™

Fig. 4.4.4 Convolutional encoder with k =1 and n = 2

States of the Encoder

In Fig. 4.4.4 the previous two successive message bits m, and m, represents state,
The input message bit m affects the ‘state’ of the encoder as well as outputs x; and x,
during that state. Whenever new message bit is shifted to ‘w’, the contents of
m, and m, define new state. And outputs x; and x, are also changed according to
new state m,, m, and message bit m. Let’s define these states as shown in Table 4.4.1.

Let the initial values of bits stored in m; and m, be zero. That is mym, =00
initially and the encoder is in state ‘a’.

m, my State of encoder

- -0 |0
- 1O |l= |
Qjo |jo|e

Table 4.4.1 States of the encoder of Fig. 44.4

Development of the Code Tree

Let us consider the development of code free for the message sequence m = 110.
Assume that m, m, =00 initially.

1) When m=1 i.e. first bit

The first message input is m = 1. With this input x, and x, will be calculated as




New slate
1 1=190®0=1 il B °4]
o R m my mp .
m m; m, x2=160=1 This bit is discarded
Before shift After shift

The values of x,x, = 11 are transmitted to the output and register contents are
shifted to right by one bit position as shown.

Thus the new state of encoder is mym; =01 or ¥ and output transmitted are
xyx, =11 This shows that if encoder is in state ‘a” and if input is m = 1 then the next
state is ¥ and outputs are x,x, =11. The first row of Table 4.4.2 illustrates this
operation.

The last column of this table shows the code tree diagram. The code tree diagram
starts at node or state ‘a’. The diagram is reproduced as shown in Fig. 4.4.5.

. Upward arrow indicates
4 that message bitism =0

Node or state
Start g
e — 4
a

Y<«—— Downward arrow indicates

that message bitism = 1
This indicates output 1 Triat iia
while going from node b - S new state
‘a'to'd’ S—11 1 or node when m = 1

Fig. 4.4.5 Code tree from node ‘a’' to ‘b’

Observe that if m = 1 we go downward from node ‘a’. Otherwise if m = 0, we go
upward from node ‘a’. It can be verified that if m = 0 then next node (state) is ‘a’ only.
Since m = 1 here we go downwards toward node b and output is 11 in this node (or
state).

2) When m=1 1.e. second bit

Now let the second message bit be 1. The contents of shift register with this input
will be as shown below.




X =19190=0

X=180=1
114010

mm, M, These values of x;x, =01 are then
transmitted to output and register
contents are shifted to right by one bit

New state The next state formed is as shown.
1410 Thus the new state of the encoder
m my m, ‘-l is mym,; =11 or ‘d’ and the outputs
This bit is discarded transmitted are x,x, =01. Thus the
encoder goes from state ‘b’ to state ‘d’

if input is ‘1" and transmitted output x,x, =01. This operation is illustrated by Table
442 in second row. The last column of the table shows the code tree for those first
and second input bits.

Example 4.4.8 : Determine the state diagram for the convolutional encoder shown in
Fig. £.4.32. Draw the trellis diagram through the first set of steady state transitions. On
the second trellis diagram, show the termination of trellis to all zero state.

S, S, S,

Input

Qutput
Fig. 4.4.32 Convolutional encoder of example 4.4.8

Sol. : (i) To determine dimension of the code :
For every message bit (k=1), two output bits (1 =2) are generated. Hence this is
rate % code. Since there are three stages in the shift register, every message bit will

affect output for three successive shifts. Hence constraint length, K = 3. Thus,

k=1 n=2 and K=3
ii) To obtain the state diagram :
First, let us define the states of the encoder.
$38;, = 00, state ‘a’
s185, = 01, state'd’

10, state'c
11, state'd

5359

.\.-‘.\'1




A table is prepared that lists state transitions, message input and outputs. The
table is as follows :

Sr. |Current state | Input Outputs Next state
No. 5,8 . X
372 X = 8,0 89 8 s
1 a=00 0 0 0 00, ie a
1 1 01, ie. b
2 b=01 0 1 0 10.18.¢
0 1 11.ie d
3 c=10 0 1 1 00 ie
1 0 0 01ie b
4 d=11 0 0 1 10 ie ¢
1 1 0 11ied

Table 4.4.8 : State transition table

Based on above table, the state diagram can be prepared easily. It is shown below
in Fig. 4.4.33.

iii) To obtain trellis diagram for steady state :
From Table 4.4.9, the code trellis diagram can be prepared. It is steady state
diagram. It is shown below.




Fig. 4.4.34 Code trellis diagram for steady state

Decoding methods of Convolution code:

1.Veterbi decoding

2.Sequential decoding

3.Feedback decoding

Veterbi algorithm for decoding of convolution codes(maximam likelihood decoding):
Let represent the received signal by y.

Convolutional encoding operates continuously on input data

Hence there areno code vectorsand blocks such as.

Metric:it is the discrepancybetwen the received signal y and the decoding signal at
particular node .this metric can be added over few nodes a particular path

Surviving path: this is the path of the decoded signalwith minimum metric
In veterbi decoding ametric isassigned to each surviving path

Metric of the particular is obtained by adding individual metric on the nodes along that
path.

Y is decoded as the surviving path with smallest metric.

Example:




Exe:

= [nput bit 0

00 - = =+ Input bit 1
i ; N ,!K";” . E
10 i S
w =5
e i Ak
g A ,.. d pa Rhed &
'901 CO " yqu;..@&,i; g%y %ﬁ
11 arla n et
i ARy 'ﬁmﬁ :
Matl Mt W
: e et

Branch code = encoder output

Inputdata- m=11011
Codeword - X=1101010001
Received code : Z=110101 1001

Z 1" 01 01
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